亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

零五網(wǎng) 全部參考答案 啟東中學(xué)作業(yè)本 2025年啟東中學(xué)作業(yè)本八年級數(shù)學(xué)上冊人教版 第15頁解析答案
1. 如圖,已知在四邊形 $ABCD$ 內(nèi),$DB = DC$,$\angle DCA = 60^{\circ}$,$\angle DAC = 78^{\circ}$,$\angle CAB = 24^{\circ}$,則 $\angle ACB$ 的度數(shù)為______。

答案:
$18^{\circ}$ 點撥: 如圖, 延長 $CA$ 到點 $E$ 使 $AE = AB$, 連接 $DE$.
$\because \angle DAC = 78^{\circ}$, $\therefore \angle DAE = 102^{\circ}$,
$\because \angle DAB = \angle DAC + \angle CAB = 78^{\circ} + 24^{\circ} = 102^{\circ}$,
$\therefore \angle DAE = \angle DAB$,
$\because DA = DA$, $\therefore \triangle DAB \cong \triangle DAE(SAS)$,
$\therefore DE = DB = DC$,
$\because \angle DCA = 60^{\circ}$, $\therefore \triangle DEC$ 是等邊三角形,
$\therefore \angle EDC = 60^{\circ}$,
$\because \angle ADC = 180^{\circ} - 78^{\circ} - 60^{\circ} = 42^{\circ}$,
$\therefore \angle EDA = 60^{\circ} - 42^{\circ} = 18^{\circ}$,
$\therefore \angle ADB = \angle EDA = 18^{\circ}$,
$\therefore \angle BDC = 60^{\circ} - 2 × 18^{\circ} = 24^{\circ}$,
$\therefore \angle DBC = \angle DCB = \frac{1}{2} × (180^{\circ} - 24^{\circ}) = 78^{\circ}$,
$\therefore \angle ACB = 78^{\circ} - 60^{\circ} = 18^{\circ}$.
EA第1題答圖
2. 如圖,在 $\triangle ABC$ 中,$AB = AC$,點 $D$,$E$ 分別在 $BC$,$AC$ 的延長線上,$AD = AE$,$\angle CDE = 30^{\circ}$。
(1) 如果設(shè) $\angle B = x^{\circ}$,用含 $x$ 的代數(shù)式表示 $\angle E$,并說明理由;
(2) 求 $\angle BAD$ 的度數(shù)。

答案:解: (1) $\angle E = 150^{\circ} - x^{\circ}$. 理由:
$\because AB = AC$, $\therefore \angle B = \angle ACB = x^{\circ}$.
$\because$ 點 $D$, $E$ 分別在 $BC$, $AC$ 的延長線上,
$\therefore \angle ACB = \angle DCE = x^{\circ}$,
$\therefore \angle E = 180^{\circ} - x^{\circ} - 30^{\circ} = 150^{\circ} - x^{\circ}$.
(2) $\because AD = AE$, $\therefore \angle ADE = \angle E = 150^{\circ} - x^{\circ}$,
$\therefore \angle EAD = 180^{\circ} - 2(150^{\circ} - x^{\circ})$.
$\because AB = AC$, $\therefore \angle BAC = 180^{\circ} - 2x^{\circ}$,
$\therefore \angle BAD = \angle BAC + \angle EAD = 180^{\circ} - 2x^{\circ} + 180^{\circ} - 300^{\circ} + 2x^{\circ} = 60^{\circ}$.
3. 如圖,$\triangle ABC$ 是等腰三角形,$AB = AC$,$0^{\circ} < \angle BAC < 60^{\circ}$,分別在 $AB$ 的右側(cè),$AC$ 的左側(cè)作等邊三角形 $ABD$ 和等邊三角形 $ACE$,$BD$ 與 $CE$ 相交于點 $F$。
(1) 求證:$BF = CF$。
(2) 作射線 $AF$ 交 $BC$ 于點 $G$,交射線 $DC$ 于點 $H$。
① 補(bǔ)全圖形,當(dāng) $\angle BAC = 40^{\circ}$ 時,求 $\angle AHD$ 的度數(shù)。
② 當(dāng) $\angle BAC$ 的度數(shù)在給定范圍內(nèi)發(fā)生變化時,$\angle AHD$ 的度數(shù)是否也發(fā)生變化?若不變,請直接寫出 $\angle AHD$ 的度數(shù);若變化,請給出 $\angle AHD$ 的度數(shù)的變化范圍。

答案:
(1) 證明: $\because AB = AC$, $\therefore \angle ACB = \angle ABC$.
$\because$ 三角形 $ABD$ 和三角形 $ACE$ 都是等邊三角形,
$\therefore \angle ACE = \angle ABD = 60^{\circ}$.
$\because 0^{\circ} < \angle BAC < 60^{\circ}$,
$\therefore \angle ACB - \angle ACE = \angle ABC - \angle ABD$, 即 $\angle FBC = \angle FCB$,
$\therefore BF = CF$.
(2) 解: ① 補(bǔ)全圖形如答圖所示.
由 (1) 可得 $FB = FC$,
$\because AB = AC$, $\therefore AH$ 垂直平分 $BC$.
$\because \angle BAC = 40^{\circ}$, $\therefore \angle HAC = \frac{1}{2} \angle BAC = 20^{\circ}$.
$\because \angle BAC = 40^{\circ}$, $\angle BAD = 60^{\circ}$,
$\therefore \angle CAD = \angle BAD - \angle BAC = 60^{\circ} - 40^{\circ} = 20^{\circ}$,
$\therefore \angle HAD = \angle HAC + \angle CAD = 20^{\circ} + 20^{\circ} = 40^{\circ}$.
$\because AD = AB$, $AB = AC$, $\therefore AC = AD$,
$\therefore \angle ADC = \angle ACD = \frac{1}{2}(180^{\circ} - \angle CAD) = \frac{1}{2} × (180^{\circ} - 20^{\circ}) = 80^{\circ}$,
在 $\triangle AHD$ 中, $\angle AHD = 180^{\circ} - \angle HAD - \angle ADH = 180^{\circ} - 40^{\circ} - 80^{\circ} = 60^{\circ}$.
第3題答圖
② 不變, $\angle AHD = 60^{\circ}$.
上一頁 下一頁