9. 如圖,在△ABC 中,AB= AC,BD⊥AC 于點(diǎn) D,求證:∠A= 2∠CBD.

答案:證明:過點(diǎn)A作AE⊥BC于點(diǎn)E,如答圖.

∵AB = AC,
∴∠BAC = 2∠CAE;
∵BD⊥AC,
∴∠BDC = ∠AEC = 90°,
∴∠CBD = 90° - ∠C,∠CAE = 90° - ∠C,
∴∠CBD = ∠CAE,
∴∠BAC = 2∠CBD.
10. 如圖,在△ABC 中,AB= AC,點(diǎn) D 在邊 BC 上,且 AD= AE.
(1)若∠BAC= 90°,∠BAD= 30°,求∠EDC 的度數(shù);
(2)若∠BAC= α(α>30°),∠BAD= 30°,求∠EDC 的度數(shù);
(3)直接寫出∠EDC 與∠BAD 之間的數(shù)量關(guān)系.

答案:解:
(1)
∵∠BAC = 90°,AB = AC,
∴∠B = ∠C = $\frac{1}{2}$(180° - ∠BAC) = 45°,
∴∠ADC = ∠B + ∠BAD = 45° + 30° = 75°.
∵∠DAC = ∠BAC - ∠BAD = 90° - 30° = 60°,AD = AE,
∴∠ADE = ∠AED = $\frac{1}{2}$(180° - ∠DAC) = 60°,
∴∠EDC = ∠ADC - ∠ADE = 75° - 60° = 15°.
(2)同
(1)得∠B = ∠C = $\frac{1}{2}$(180° - ∠BAC) = 90° - $\frac{1}{2}$α,
∴∠ADC = ∠B + ∠BAD = 90° - $\frac{1}{2}$α + 30° = 120° - $\frac{1}{2}$α.
∵∠DAC = ∠BAC - ∠BAD = α - 30°,AD = AE,
∴∠ADE = ∠AED = $\frac{1}{2}$(180° - ∠DAC) = 105° - $\frac{1}{2}$α,
∴∠EDC = ∠ADC - ∠ADE = (120° - $\frac{1}{2}$α) - (105° - $\frac{1}{2}$α) = 15°.
(3)∠EDC = $\frac{1}{2}$∠BAD.
11. 如圖①,用兩條線段(虛線)將一個(gè)頂角為 36°的等腰三角形分成了三個(gè)小等腰三角形,并標(biāo)出了三個(gè)小等腰三角形頂角的度數(shù).
(1)請(qǐng)你仿照?qǐng)D①的方法,在圖②中,用兩種不同的分割方法將頂角為 45°的等腰三角形分成三個(gè)小等腰三角形.
(2)在△ABC 中,∠B= 30°,請(qǐng)用線段 AD 和 DE(點(diǎn) D 在 BC 邊上,點(diǎn) E 在 AC 邊上)將△ABC 分成三個(gè)小等腰三角形,且 AD= BD,DE= CE.
①試仿照?qǐng)D①,在圖③中畫出示意圖;
②求∠C 的所有可能度數(shù).

答案:解:
(1)如答圖①.

(2)①如答圖②所示.

②當(dāng)AD = AE時(shí),2x + x = 30° + 30°,解得x = 20°;當(dāng)AD = DE時(shí),30° + 30° + 2x + x = 180°,解得x = 40°.綜上可知,∠C的度數(shù)是20°或40°.