11.(12分)解下列方程:
(1)$8x - 4 = 6x - 8$; (2)$\frac{x + 1}{2} - 2 = \frac{x - 3}{4}$.
答案:(1)$x=-2$ (2)$x=3$
解析:
(1)解:$8x - 6x = -8 + 4$
$2x = -4$
$x = -2$
(2)解:$2(x + 1) - 8 = x - 3$
$2x + 2 - 8 = x - 3$
$2x - x = -3 + 8 - 2$
$x = 3$
12.(8分)先化簡,再求值:$5(3x^{2}y - xy^{2}) - (xy^{2} + 3x^{2}y)$,其中$x = 1$,$y = -1$.
答案:解:原式$=15x^{2}y-5xy^{2}-xy^{2}-3x^{2}y=12x^{2}y-6xy^{2}$,當$x=1,y=-1$時,原式$=12×1^{2}×(-1)-6×1×(-1)^{2}=-18$.
解析:
解:原式$=15x^{2}y - 5xy^{2} - xy^{2} - 3x^{2}y$
$=(15x^{2}y - 3x^{2}y) + (-5xy^{2} - xy^{2})$
$=12x^{2}y - 6xy^{2}$
當$x = 1$,$y = -1$時,
原式$=12×1^{2}×(-1) - 6×1×(-1)^{2}$
$=12×1×(-1) - 6×1×1$
$=-12 - 6$
$=-18$
13.(8分)小明家買了一輛轎車,他連續(xù)10天記錄了他家轎車每天行駛的路程,以20km為標準,超過或不足部分分別用正數(shù)、負數(shù)表示,得到的數(shù)據(jù)如下(單位:km):
$+3$,$+1$,$-2$,$+9$,$-8$,$+2$,$-4$,$+5$,$-3$,$+2$.
(1)請計算小明家這10天轎車行駛的路程;
(2)若該轎車每行駛100km耗用汽油7L,且汽油的價格為每升8元,請估計小明家一個月(按30天算)的汽油費用.
答案:(1)$3+1-2+9-8+2-4+5-3+2=5(\text{km})$,$20×10+5=205(\text{km})$.答:小明家這10天轎車行駛的路程為205km.(2)$205×(30÷10)÷100×7×8=344.4(\text{元})$.答:估計小明家一個月(按30天算)的汽油費用為344.4元.
14.(10分)甲組有4名工人,他們12月份完成的總工作量比這個月人均額定工作量的3倍少1件.乙組有6名工人,他們12月份完成的總工作量比這個月人均額定工作量的5倍多7件.如果甲組工人這個月實際完成的人均工作量比乙組工人這個月實際完成的人均工作量少2件,那么這個月人均額定工作量是多少件?
答案:解:設這個月人均額定工作量是$x$件.依題意列方程得$(3x-1)÷4=(5x+7)÷6-2$,解得$x=7$.答:這個月人均額定工作量是7件.
15.(12分)O為直線AD上一點,以點O為頂點作$\angle COE = 90^{\circ}$,射線OF平分$\angle AOE$.
(1)如圖①,$\angle AOC與\angle DOE$的數(shù)量關系為
$\angle AOC+\angle DOE=90^{\circ}$
;
(2)如圖①,若$\angle AOC = 60^{\circ}$,請求出$\angle COF$的度數(shù);
解:$\because \angle AOC=60^{\circ},\angle COE=90^{\circ}$,$\therefore \angle AOE=\angle AOC+\angle COE=150^{\circ}$.$\because OF$平分$\angle AOE$,$\therefore \angle AOF=\frac{1}{2}\angle AOE=75^{\circ}$,$\therefore \angle COF=\angle AOF-\angle AOC=75^{\circ}-60^{\circ}=15^{\circ}$.
(3)若將圖①中的$\angle COE$繞點O旋轉至圖②的位置,OF依然平分$\angle AOE$,若$\angle AOC = \alpha$,請求出$\angle COF$的度數(shù).
解:$\because \angle AOC=\alpha,\angle COE=90^{\circ}$,$\therefore \angle AOE=\angle COE-\angle AOC=90^{\circ}-\alpha$.$\because OF$平分$\angle AOE$,$\therefore \angle AOF=\frac{1}{2}\angle AOE=45^{\circ}-\frac{1}{2}\alpha$,$\therefore \angle COF=\angle AOC+\angle AOF=\alpha+45^{\circ}-\frac{1}{2}\alpha=45^{\circ}+\frac{1}{2}\alpha$.
答案:(1)$\angle AOC+\angle DOE=90^{\circ}$(2)解:$\because \angle AOC=60^{\circ},\angle COE=90^{\circ}$,$\therefore \angle AOE=\angle AOC+\angle COE=150^{\circ}$.$\because OF$平分$\angle AOE$,$\therefore \angle AOF=\frac{1}{2}\angle AOE=75^{\circ}$,$\therefore \angle COF=\angle AOF-\angle AOC=75^{\circ}-60^{\circ}=15^{\circ}$.(3)解:$\because \angle AOC=\alpha,\angle COE=90^{\circ}$,$\therefore \angle AOE=\angle COE-\angle AOC=90^{\circ}-\alpha$.$\because OF$平分$\angle AOE$,$\therefore \angle AOF=\frac{1}{2}\angle AOE=45^{\circ}-\frac{1}{2}\alpha$,$\therefore \angle COF=\angle AOC+\angle AOF=\alpha+45^{\circ}-\frac{1}{2}\alpha=45^{\circ}+\frac{1}{2}\alpha$.