8. 定義新運算:$a※b = 3a - 2b$,則$[(x + y)※(x - y)]※3x = $
15y?3x
.
答案:15y?3x
解析:
$[(x + y)※(x - y)]※3x$
$=[3(x + y)-2(x - y)]※3x$
$=(3x + 3y - 2x + 2y)※3x$
$=(x + 5y)※3x$
$=3(x + 5y)-2×3x$
$=3x + 15y - 6x$
$=15y - 3x$
9. 已知有理數(shù)$a,b,c$在數(shù)軸上對應點的位置如圖所示,

化簡:$|b - c| - 2|c - a| + |b + c| = $
?2a
.
答案:?2a
解析:
由數(shù)軸可知:$c < -1$,$0 < b < 1$,$a > 1$,且$|c| > b$。
$\because b > c$,$\therefore b - c > 0$,$|b - c| = b - c$;
$\because c < a$,$\therefore c - a < 0$,$|c - a| = a - c$;
$\because |c| > b$,$\therefore b + c < 0$,$|b + c| = -b - c$。
$\therefore |b - c| - 2|c - a| + |b + c|$
$= (b - c) - 2(a - c) + (-b - c)$
$= b - c - 2a + 2c - b - c$
$= -2a$
$-2a$
10. 化簡:
(1)$3x^{2} + [2x - (-5x^{2} + 4x) + 2] - 1$;
(2)$(9a - 2b) - [8a - (5b - 2c)] + 2c$;
(3)$9a - \{3a - [4a - (7a - 3)]\}$;
(4)$4m^{2} - [5m^{2} - 2(m^{2} - 2m) - 3(2m^{2} + 3m)]$.
答案:解:(1)原式=3x2+2x+5x2?4x+2?1=8x2?2x+1. (2)原式=9a?2b?8a+5b?2c+2c=a+3b. (3)原式=9a?{3a?[4a?7a+3]}=9a?{3a?4a+7a?3}=9a?3a+4a?7a+3=3a+3. (4)原式=4m2?[5m2?2m2+4m?6m2?9m]=4m2?5m2+2m2?4m+6m2+9m=7m2+5m.
解析:
解:(1)原式$=3x^{2}+[2x+5x^{2}-4x+2]-1$
$=3x^{2}+2x+5x^{2}-4x+2-1$
$=8x^{2}-2x+1$
(2)原式$=9a - 2b - [8a - 5b + 2c] + 2c$
$=9a - 2b - 8a + 5b - 2c + 2c$
$=a + 3b$
(3)原式$=9a - \{3a - [4a - 7a + 3]\}$
$=9a - \{3a - [-3a + 3]\}$
$=9a - \{3a + 3a - 3\}$
$=9a - 6a + 3$
$=3a + 3$
(4)原式$=4m^{2}-[5m^{2}-2m^{2}+4m - 6m^{2}-9m]$
$=4m^{2}-[ - 3m^{2}-5m]$
$=4m^{2}+3m^{2}+5m$
$=7m^{2}+5m$
11. 已知$A = 2a + 3ab - 1,B = 2a + ab - 1$.
(1)計算$A - 2B$;
(2)若$A - 2B的值與a$的值無關(guān),求$b$的值.
答案:解:(1)因為A=2a+3ab?1,B=2a+ab?1, 所以A?2B=(2a+3ab?1)?2(2a+ab?1)=2a+3ab?1?4a?2ab+2=ab?2a+1. (2)由(1)知A?2B=(b?2)a+1. 因為A?2B的值與a的值無關(guān), 所以b?2=0,解得b=2.
解析:
(1)因為$A = 2a + 3ab - 1$,$B = 2a + ab - 1$,所以$A - 2B=(2a + 3ab - 1)-2(2a + ab - 1)=2a + 3ab - 1 - 4a - 2ab + 2=ab - 2a + 1$。
(2)由(1)知$A - 2B=(b - 2)a + 1$,因為$A - 2B$的值與$a$的值無關(guān),所以$b - 2 = 0$,解得$b = 2$。
12. 小杰準備完成題目:化簡$(■x^{2} + 6x + 9) - (6x + 4x^{2} - 7)$,發(fā)現(xiàn)系數(shù)“■”印刷不清楚.
(1)他把“■”猜成 3,請你化簡$(3x^{2} + 6x + 9) - (6x + 4x^{2} - 7)$;
(2)他媽媽說:“你猜錯了,我看到該題的標準答案是常數(shù).”通過計算說明原題中的“■”是多少.
答案:解:(1)(3x2+6x+9)?(6x+4x2?7)=3x2+6x+9?6x?4x2+7=?x2+16. (2)設(shè)“■”是a, 則原式=(ax2+6x+9)?(6x+4x2?7)=ax2+6x+9?6x?4x2+7=(a?4)x2+16. 因為標準答案是常數(shù), 所以a?4=0,解得a=4, 故原題中的“■”是4.
解析:
(1)$(3x^{2} + 6x + 9) - (6x + 4x^{2} - 7)$
$=3x^{2} + 6x + 9 - 6x - 4x^{2} + 7$
$=-x^{2} + 16$
(2)設(shè)“■”是$a$,則原式
$=(ax^{2} + 6x + 9) - (6x + 4x^{2} - 7)$
$=ax^{2} + 6x + 9 - 6x - 4x^{2} + 7$
$=(a - 4)x^{2} + 16$
因為標準答案是常數(shù),所以$a - 4 = 0$,解得$a = 4$,故原題中的“■”是$4$。
13. (2024 秋·蘇州期中)某同學做一道數(shù)學題,已知兩個多項式$A,B$,其中$B = 2x^{2}y - 3xy + 2x + 5$,試求$A + B$. 這位同學把$A + B誤看成A - B$,結(jié)果求出的答案為$4x^{2}y + xy - x - 4$.
(1)請你幫這位同學求出$A + B$的正確答案;
(2)若$A - 3B的值與x$的取值無關(guān),求$y$的值.
答案:解:(1)由題意可得,A?B=4x2y+xy?x?4, 所以A=4x2y+xy?x?4+(2x2y?3xy+2x+5)=4x2y+xy?x?4+2x2y?3xy+2x+5=6x2y?2xy+x+1, 所以A+B=6x2y?2xy+x+1+(2x2y?3xy+2x+5)=6x2y?2xy+x+1+2x2y?3xy+2x+5=8x2y?5xy+3x+6. (2)A?3B=6x2y?2xy+x+1?3(2x2y?3xy+2x+5)=6x2y?2xy+x+1?6x2y+9xy?6x?15=7xy?5x?14=(7y?5)x?14. 因為A?3B的值與x的取值無關(guān), 所以7y?5=0,解得y=$\frac{5}{7}$.
解析:
(1)由題意得,$A - B = 4x^{2}y + xy - x - 4$,則$A = 4x^{2}y + xy - x - 4 + B$。
因為$B = 2x^{2}y - 3xy + 2x + 5$,所以:
$\begin{aligned}A&=4x^{2}y + xy - x - 4 + 2x^{2}y - 3xy + 2x + 5\\&=(4x^{2}y + 2x^{2}y) + (xy - 3xy) + (-x + 2x) + (-4 + 5)\\&=6x^{2}y - 2xy + x + 1\end{aligned}$
則$A + B = 6x^{2}y - 2xy + x + 1 + 2x^{2}y - 3xy + 2x + 5$
$\begin{aligned}&=(6x^{2}y + 2x^{2}y) + (-2xy - 3xy) + (x + 2x) + (1 + 5)\\&=8x^{2}y - 5xy + 3x + 6\end{aligned}$
(2)$A - 3B = 6x^{2}y - 2xy + x + 1 - 3(2x^{2}y - 3xy + 2x + 5)$
$\begin{aligned}&=6x^{2}y - 2xy + x + 1 - 6x^{2}y + 9xy - 6x - 15\\&=(6x^{2}y - 6x^{2}y) + (-2xy + 9xy) + (x - 6x) + (1 - 15)\\&=7xy - 5x - 14\\&=(7y - 5)x - 14\end{aligned}$
因為$A - 3B$的值與$x$的取值無關(guān),所以$7y - 5 = 0$,解得$y = \frac{5}{7}$。