1. 將整式$-(x - 1)$去括號(hào),結(jié)果正確的是 (
D
)
A.$x - 1$
B.$x + 1$
C.$-x - 1$
D.$-x + 1$
答案:D
解析:
$-(x - 1) = -x + 1$,答案選D。
2. (2024 秋·海門區(qū)期中)下列各式添括號(hào)正確的是 (
D
)
A.$a - b + c = a - (b + c)$
B.$a - b - c = a - (b - c)$
C.$a + b - c = a - (b + c)$
D.$a + b - c = a + (b - c)$
答案:D
解析:
A.$a - b + c = a - (b - c)$,故A錯(cuò)誤;
B.$a - b - c = a - (b + c)$,故B錯(cuò)誤;
C.$a + b - c = a - (-b + c)$,故C錯(cuò)誤;
D.$a + b - c = a + (b - c)$,故D正確。
結(jié)論:D
3. 去括號(hào):
(1)$a - (-b + c - 2d) = $
a+b?c+2d
;
(2)$(x - y) + (-2m - n) = $
x?y?2m?n
;
(3)$(x - y) - (-3m - n) = $
x?y+3m+n
;
(4)$-(a + 2b) - (-c - 4d) = $
?a?2b+c+4d
;
(5)$(a - 4b) - (-3c + d) = $
a?4b+3c?d
;
(6)$-(a - 2b) + (-c - 5d) = $
?a+2b?c?5d
.
答案:(1)a+b?c+2d (2)x?y?2m?n (3)x?y+3m+n (4)?a?2b+c+4d (5)a?4b+3c?d (6)?a+2b?c?5d
解析:
(1)$a + b - c + 2d$
(2)$x - y - 2m - n$
(3)$x - y + 3m + n$
(4)$-a - 2b + c + 4d$
(5)$a - 4b + 3c - d$
(6)$-a + 2b - c - 5d$
4. 化簡(jiǎn):
(1)$(2x - 5y) - (3x - 5y + 1)$;
(2)$2(2 - 7x) - 3(6x + 5)$;
(3)$3(a^{2} - 2ab) - 2(-3ab + b^{2})$;
(4)$\frac{1}{2}x - (2x - \frac{2}{3}y^{2}) + (-\frac{3}{2}x + \frac{1}{3}y^{2})$;
(5)$2(2b - 3a) + 3(2a - 3b)$;
(6)$4a^{2} + 2(3ab - 2a^{2}) - (7ab - 1)$.
答案:解:(1)原式=2x?5y?3x+5y?1=?x?1. (2)原式=4?14x?18x?15=?32x?11. (3)原式=3a2?6ab+6ab?2b2=3a2?2b2. (4)原式=$\frac{1}{2}x$-2x+$\frac{2}{3}y^{2}$-$\frac{3}{2}x$+$\frac{1}{3}y^{2}$=-3x+$y^{2}$. (5)原式=4b?6a+6a?9b=?5b. (6)原式=4a2+6ab?4a2?7ab+1=?ab+1.
5. (2024 秋·蘇州月考)下列各式從左到右的變形中,正確的是 (
D
)
A.$x - (y - z) = x - y - z$
B.$x + 2(y - z) = x + 2y - z$
C.$x + 2y - 2z = x - 2(y - z)$
D.$-(x - y + z) = -x + y - z$
答案:D
解析:
A. $x - (y - z) = x - y + z$,故A錯(cuò)誤;
B. $x + 2(y - z) = x + 2y - 2z$,故B錯(cuò)誤;
C. $x + 2y - 2z = x + 2(y - z)$,故C錯(cuò)誤;
D. $-(x - y + z) = -x + y - z$,故D正確。
D
6. (2024 秋·啟東期中)若關(guān)于$x,y的多項(xiàng)式x^{2} + ax - y + b與多項(xiàng)式bx^{2} - 3x + 6y - 3的差的值與字母x$的取值無關(guān),則代數(shù)式$3(a^{2} - 2ab - 7) - (4a^{2} + ab + b^{2})$的值為
?10
.
答案:?10
解析:
$(x^{2}+ax - y + b)-(bx^{2}-3x + 6y - 3)$
$=x^{2}+ax - y + b - bx^{2}+3x - 6y + 3$
$=(1 - b)x^{2}+(a + 3)x - 7y + (b + 3)$
因?yàn)椴畹闹蹬c字母$x$的取值無關(guān),所以$1 - b = 0$,$a + 3 = 0$,解得$b = 1$,$a=-3$。
$3(a^{2}-2ab - 7)-(4a^{2}+ab + b^{2})$
$=3a^{2}-6ab - 21 - 4a^{2}-ab - b^{2}$
$=-a^{2}-7ab - b^{2}-21$
將$a=-3$,$b = 1$代入上式:
$-(-3)^{2}-7×(-3)×1 - 1^{2}-21$
$=-9 + 21 - 1 - 21$
$=-10$
$-10$
7. 某輪船在靜水中的速度是$50\text{km/h}$,水流速度是$a\text{km/h}$. 若該輪船順?biāo)叫?2\text{h}$,逆水航行$1.5\text{h}$,則該輪船共航行
0.5a+175
$\text{km}$.
答案:0.5a+175
解析:
順?biāo)俣葹?(50 + a)\text{km/h}$,順?biāo)叫新烦虨?2(50 + a)\text{km}$;逆水速度為$(50 - a)\text{km/h}$,逆水航行路程為$1.5(50 - a)\text{km}$。總航行路程為$2(50 + a) + 1.5(50 - a) = 100 + 2a + 75 - 1.5a = 0.5a + 175$。
$0.5a + 175$