13.學(xué)科分類討論思想「2025河南安陽期中,」如圖,在△ABC中,∠C= ∠ABC= 30°,△ADE是直角三角形,∠ADE= 90°,∠E= 30°,且邊AB與AD重合,將△ADE繞點A以每秒5°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第______秒時,邊DE所在直線與邊AC所在直線平行.

答案:答案 $6$或$42$
解析 分兩種情況:①當(dāng)$DE$在$AB$上方時,如圖1所示,$\because DE// AC$,$\therefore \angle D+\angle DAC=180^{\circ}$,
$\because \angle D=90^{\circ}$,$\therefore \angle DAC=90^{\circ}$.
$\because \angle C=\angle ABC=30^{\circ}$,$\therefore \angle BAC=120^{\circ}$,
$\therefore \angle BAD=120^{\circ}-90^{\circ}=30^{\circ}$,
$\therefore$在旋轉(zhuǎn)的過程中,第$30^{\circ}\div 5^{\circ}=6$(秒)時,邊$DE$所在直線與邊$AC$所在直線平行.
②當(dāng)$DE$在$AB$下方時,如圖2所示,
$\because DE// AC$,$\therefore \angle CAD=\angle D=90^{\circ}$,
$\because \angle C=\angle ABC=30^{\circ}$,$\therefore \angle BAC=120^{\circ}$,
$\therefore \triangle ADE$旋轉(zhuǎn)的度數(shù)為$120^{\circ}+90^{\circ}=210^{\circ}$,
$\therefore$在旋轉(zhuǎn)的過程中,第$210^{\circ}\div 5^{\circ}=42$(秒)時,邊$DE$所在直線與邊$AC$所在直線平行.
綜上所述,第$6$或$42$秒時,邊$DE$所在直線與邊$AC$所在直線平行.
