亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

零五網(wǎng) 全部參考答案 5年中考3年模擬答案 2025年5年中考3年模擬九年級數(shù)學(xué)上冊人教版 第49頁解析答案
8.「2025陜西延安富縣期中,」如圖,把邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°得到正方形AB'C'D',邊B'C'與DC交于點O,則四邊形AB'OD的面積為( )

A.2
B.2√2
C.√2 - 1
D.2 - √2
答案:
C 如圖,連接$AC$,$\because$正方形$ABCD$繞點$A$逆時針旋轉(zhuǎn)$45^{\circ}$后得到正方形$AB'C'D'$,
$\therefore A$、$B'$、$C$三點共線,$AB'=AB=1$,$\angle AB'C'=\angle B=90^{\circ}$,$\because$四邊形$ABCD$為正方形,
$\therefore \angle BAC=\angle ACD=45^{\circ}$,$AC=\sqrt{2}AB=\sqrt{2}$,
$\therefore \triangle OCB'$為等腰直角三角形,
$\because CB'=AC-AB'=\sqrt{2}-1$,$\therefore OB'=CB'=\sqrt{2}-1$,
$\therefore$四邊形$AB'OD$的面積$=S_{\triangle ADC}-S_{\triangle OCB'}=\frac{1}{2}\times 1\times 1-\frac{1}{2}\times (\sqrt{2}-1)\times (\sqrt{2}-1)=\sqrt{2}-1$.故選C.
9.「2025遼寧撫順新?lián)嵩驴?」如圖,在Rt△ABC中,∠ACB= 90°,∠A= 30°,BC= 1,將△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C,其中點A'與點A是對應(yīng)點,點B'與點B是對應(yīng)點,若點B'恰好落在AB邊上,則點A到直線A'C的距離等于( )

A.1
B.√3
C.3/2
D.3√3/2
答案:
C 如圖,過點$A$作$AH\perp A'C$于$H$,$\because \angle ACB=90^{\circ}$,$\angle CAB=30^{\circ}$,$BC=1$,$\therefore \angle B=60^{\circ}$,$AB=2$,
在$Rt\triangle ABC$中,由勾股定理得$AC=\sqrt{AB^{2}-BC^{2}}=\sqrt{3}$,$\because$將$\triangle ABC$繞點$C$順時針旋轉(zhuǎn)得到$\triangle A'B'C$,
$\therefore CB=CB'$,$\angle A'CB'=\angle ACB=90^{\circ}$,
$\therefore \angle B=\angle CB'B=60^{\circ}$,$\therefore \angle BCB'=60^{\circ}$,
易證$\angle ACH=\angle BCB'=60^{\circ}$,
$\because \angle AHC=90^{\circ}$,$\therefore \angle CAH=30^{\circ}$,$\therefore CH=\frac{1}{2}AC=\frac{\sqrt{3}}{2}$,
在$Rt\triangle ACH$中,由勾股定理得$AH=\sqrt{AC^{2}-CH^{2}}=\frac{3}{2}$,$\therefore$點$A$到直線$A'C$的距離等于$\frac{3}{2}$.故選C.
B
10.學(xué)科對角互補(bǔ)模型「2025廣東廣州海珠期中,」如圖,點F為正方形ABCD對角線AC的中點,將以點F為直角頂點的直角△FEG繞點F旋轉(zhuǎn)(△FEG的邊EG始終在正方形ABCD外),若正方形ABCD的邊長為3,則在旋轉(zhuǎn)過程中,△FEG與正方形ABCD重疊部分的面積為( )

A.9
B.3
C.4.5
D.2.25
答案:
D 如圖,連接$FD$,$\because$點$F$是$AC$的中點,四邊形$ABCD$是正方形,
$\therefore \angle DFC=90^{\circ}$,$DF=FC$,$\angle FDN=\angle FCM=45^{\circ}$,$\therefore \angle DFN+\angle NFC=90^{\circ}$,
$\because EF\perp FG$,$\therefore \angle MFC+\angle NFC=90^{\circ}$,$\therefore \angle DFN=\angle CFM$,$\therefore \triangle MFC\cong \triangle NFD(ASA)$,$\therefore S_{\triangle MFC}=S_{\triangle NFD}$,
$\therefore S_{四邊形FMCN}=S_{\triangle MFC}+S_{\triangle NFC}=S_{\triangle NFD}+S_{\triangle NFC}=S_{\triangle DFC}$,
$\because$正方形$ABCD$的邊長為$3$,$\therefore AC=3\sqrt{2}$,$\therefore FD=FC=\frac{3\sqrt{2}}{2}$,
$\therefore S_{\triangle DFC}=\frac{1}{2}FD\cdot FC=\frac{1}{2}\times \frac{3\sqrt{2}}{2}\times \frac{3\sqrt{2}}{2}=2.25$,$\therefore$重疊部分的面積為$2.25$.故選D.
11.「2025天津南開中學(xué)月考,」如圖,在△ABC中,∠ACB= 90°,BC= 2,∠BAC=
30°,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A'B'C,M是BC的中點,P是A'B'的中點,連接PM,則PM的最大值是______.


答案:
答案 $3$
解析 如圖,連接$PC$.在$Rt\triangle ABC$中,$\because \angle A=30^{\circ}$,$BC=2$,$\therefore AB=4$,根據(jù)旋轉(zhuǎn)的性質(zhì)可知,$A'B'=AB=4$,$\because P$為$A'B'$的中點,$\triangle A'B'C$為直角三角形,$\therefore PC=\frac{1}{2}A'B'=2$,
$\because M$是$BC$的中點,$\therefore CM=\frac{1}{2}BC=1$,$\because PM\leqslant PC+CM=3$,
$\therefore$當(dāng)$P$、$C$、$M$共線,且$C$在$P$、$M$之間時,$PM$取得最大值,最大值為$3$.
CMB
12.「2025河南駐馬店一中期末,」如圖,在△ABC中,∠ACB= 90°,AC= 3,BC= 4,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△A'B'C,若P為邊AB上一動點,旋轉(zhuǎn)后點P的對應(yīng)點為點P',則線段PP'長度的取值范圍是______.

答案:
答案 $\frac{12\sqrt{2}}{5}\leqslant PP'\leqslant 4\sqrt{2}$
解析 如圖,連接$PC$,$P'C$,過點$C$作$CH\perp AB$于$H$,$\because$將$\triangle ABC$繞點$C$順時針旋轉(zhuǎn)$90^{\circ}$得到$\triangle A'B'C$,
$\therefore PC=P'C$,$\angle PCP'=90^{\circ}$,$\therefore PP'=\sqrt{2}CP$.
$\because \angle ACB=90^{\circ}$,$AC=3$,$BC=4$,
$\therefore AB=\sqrt{AC^{2}+BC^{2}}=\sqrt{9 + 16}=5$,
$\because S_{\triangle ABC}=\frac{1}{2}\times 3\times 4=\frac{1}{2}\times 5CH$,$\therefore CH=\frac{12}{5}$,
$\because P$為邊$AB$上一動點,$\therefore$當(dāng)點$P$與點$B$重合時,$CP$有最大值,為$4$,此時$PP'$的值最大,為$4\sqrt{2}$,當(dāng)點$P$與點$H$重合時,$CP$有最小值,為$\frac{12}{5}$,此時$PP'$的值最小,為$\frac{12\sqrt{2}}{5}$,
$\therefore$線段$PP'$長度的取值范圍為$\frac{12\sqrt{2}}{5}\leqslant PP'\leqslant 4\sqrt{2}$.
A
13.學(xué)科分類討論思想「2025河南安陽期中,」如圖,在△ABC中,∠C= ∠ABC= 30°,△ADE是直角三角形,∠ADE= 90°,∠E= 30°,且邊AB與AD重合,將△ADE繞點A以每秒5°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第______秒時,邊DE所在直線與邊AC所在直線平行.

答案:
答案 $6$或$42$
解析 分兩種情況:①當(dāng)$DE$在$AB$上方時,如圖1所示,$\because DE// AC$,$\therefore \angle D+\angle DAC=180^{\circ}$,
$\because \angle D=90^{\circ}$,$\therefore \angle DAC=90^{\circ}$.
$\because \angle C=\angle ABC=30^{\circ}$,$\therefore \angle BAC=120^{\circ}$,
$\therefore \angle BAD=120^{\circ}-90^{\circ}=30^{\circ}$,
$\therefore$在旋轉(zhuǎn)的過程中,第$30^{\circ}\div 5^{\circ}=6$(秒)時,邊$DE$所在直線與邊$AC$所在直線平行.
②當(dāng)$DE$在$AB$下方時,如圖2所示,
$\because DE// AC$,$\therefore \angle CAD=\angle D=90^{\circ}$,
$\because \angle C=\angle ABC=30^{\circ}$,$\therefore \angle BAC=120^{\circ}$,
$\therefore \triangle ADE$旋轉(zhuǎn)的度數(shù)為$120^{\circ}+90^{\circ}=210^{\circ}$,
$\therefore$在旋轉(zhuǎn)的過程中,第$210^{\circ}\div 5^{\circ}=42$(秒)時,邊$DE$所在直線與邊$AC$所在直線平行.
綜上所述,第$6$或$42$秒時,邊$DE$所在直線與邊$AC$所在直線平行.
圖1
圖2
14.新課標(biāo)推理能力「2025北京工業(yè)大學(xué)實驗學(xué)校期中」如圖,點P為定角∠AOB平分線上的一個定點,且∠MPN與∠AOB互補(bǔ).若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結(jié)論:①OM+ON的值不變;②∠PNM= ∠POB;③MN的長不變;④四邊形PMON的面積不變.其中正確的結(jié)論是(
B
)

A.①②③
B.①②④
C.①③④
D.②③④
答案:B 如圖,過$P$作$PE\perp OA$于$E$,$PF\perp OB$于$F$,$\therefore \angle PEO=\angle PFO=90^{\circ}$,$\because OP$為$\angle AOB$的平分線,$\therefore \angle EOP=\angle FOP$,
又$\because OP=OP$,$\therefore \triangle POE\cong \triangle POF(AAS)$,$\therefore OE=OF$,$PE=PF$.
$\because \angle EPF+\angle AOB=360^{\circ}-90^{\circ}-90^{\circ}=180^{\circ}$,$\angle MPN+\angle AOB=180^{\circ}$,$\therefore \angle EPF=\angle MPN$,$\therefore \angle EPM=\angle FPN$;$\because \angle PEM=\angle PFN=90^{\circ}$,$\therefore \triangle PEM\cong \triangle PFN(ASA)$,
$\therefore EM=NF$,$PM=PN$,$\therefore OM+ON=OE+OF=$定值,故①正確.
$\because \triangle PEM\cong \triangle PFN$,$\therefore S_{\triangle PEM}=S_{\triangle PNF}$,$\therefore S_{四邊形PMON}=S_{四邊形PEOF}=$定值,故④正確.
設(shè)$\angle MPN=x^{\circ}$,$\because PM=PN$,$\therefore \angle PNM=\angle PMN=\frac{1}{2}\times (180^{\circ}-x^{\circ})=90^{\circ}-\frac{1}{2}x^{\circ}$,
$\because \angle AOB+\angle MPN=180^{\circ}$,$\therefore \angle AOB=180^{\circ}-x^{\circ}$,$\therefore \angle POB=\frac{1}{2}\times (180^{\circ}-x^{\circ})=90^{\circ}-\frac{1}{2}x^{\circ}$,$\therefore \angle PNM=\angle POB$,故②正確.
在旋轉(zhuǎn)過程中,$\triangle PMN$都是等腰三角形,且$\angle MPN$不變,$\because PM$的長度是變化的,$\therefore MN$的長度也是變化的,故③錯誤.
綜上所述,正確的結(jié)論是①②④,故選B.
上一頁 下一頁