1.「2025廣西防城港期中」下列運(yùn)動形式屬于旋轉(zhuǎn)的是(
A
)
A.蕩秋千
B.射箭
C.立定跳遠(yuǎn)
D.跑步
答案:A 蕩秋千屬于旋轉(zhuǎn)現(xiàn)象.故選A.
2.新數(shù)學(xué)文化如圖所示的是由七巧板拼成的圖案,其中能通過旋轉(zhuǎn)互相得到的是(
B
)

A.①②
B.①④
C.③④
D.②③
答案:B 圖案③和其他圖案不同,不能與其他圖案通過旋轉(zhuǎn)互相得到,故排除C、D選項(xiàng);圖案①②只能通過軸對稱互相得到;圖案①④可通過旋轉(zhuǎn)互相得到.故選B.
3.「2024河北保定清苑期末」如圖,△ABC繞著圖中某點(diǎn)逆時(shí)針旋轉(zhuǎn)到△DEF的位置,則旋轉(zhuǎn)中心及旋轉(zhuǎn)角分別是(
D
)

A.點(diǎn)B,∠ABO
B.點(diǎn)O,∠AOB
C.點(diǎn)B,∠BOE
D.點(diǎn)O,∠AOD
答案:D 由題圖可知$\triangle ABC$繞著點(diǎn)$O$逆時(shí)針旋轉(zhuǎn)$\angle AOD$的度數(shù)得到$\triangle DEF$,則旋轉(zhuǎn)中心是點(diǎn)$O$,旋轉(zhuǎn)角是$\angle AOD$.故選D.
4.「2024江蘇無錫中考」如圖,在△ABC中,∠B= 80°,∠C= 65°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△AB'C'.當(dāng)AB'落在AC上時(shí),∠BAC'的度數(shù)為(
B
)

A.65°
B.70°
C.80°
D.85°
答案:B 由旋轉(zhuǎn)的性質(zhì)可得出$\angle B'AC'=\angle BAC$,$\because \angle BAC+\angle B+\angle C=180^{\circ}$,$\therefore \angle BAC=180^{\circ}-80^{\circ}-65^{\circ}=35^{\circ}$,$\therefore \angle B'AC'=\angle BAC=35^{\circ}$,$\therefore \angle BAC'=\angle BAC+\angle B'AC'=70^{\circ}$.故選B.
5.「2023內(nèi)蒙古呼倫貝爾中考」如圖,在平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)

為(8,4),連接OB,將OB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到OB',則點(diǎn)B'的坐標(biāo)為______.
答案:答案 $(-4,8)$
解析 如圖,分別過點(diǎn)$B$、$B'$向$x$軸作垂線,垂足分別為$M$、$N$,
$\therefore \angle B'NO=\angle OMB=90^{\circ}$,$\therefore \angle BOM+\angle OBM=90^{\circ}$,$\because \angle BOB'=90^{\circ}$,
$\therefore \angle BOM+\angle B'ON=90^{\circ}$,$\therefore \angle B'ON=\angle OBM$.在$\triangle OMB$和$\triangle B'NO$中,$\begin{cases}\angle OMB=\angle B'NO\\\angle OBM=\angle B'ON\\OB=B'O\end{cases}$,
$\therefore \triangle OMB\cong \triangle B'NO(AAS)$,$\therefore B'N=OM=8$,$ON=BM=4$,
$\therefore$點(diǎn)$B'$的坐標(biāo)為$(-4,8)$.
6.「2025湖北黃石大冶期中」如圖,在四邊形ABCD中,AC,BD是對角線,△ABC是等邊三角形.線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CE,連接AE.
(1)求證:AE= BD.
(2)若∠ADC= 30°,AD= 3,BD= 5,求CD的長.

答案:解析 (1)證明:由旋轉(zhuǎn)的性質(zhì)可知$\angle DCE=60^{\circ}$,$CD=CE$,
$\because \triangle ABC$是等邊三角形,
$\therefore \angle ACB=60^{\circ}$,$AC=BC$,
$\therefore \angle ACB+\angle ACD=\angle DCE+\angle ACD$,即$\angle BCD=\angle ACE$,
在$\triangle BCD$和$\triangle ACE$中,$\begin{cases}BC=AC\\\angle BCD=\angle ACE\\CD=CE\end{cases}$,
$\therefore \triangle BCD\cong \triangle ACE(SAS)$,$\therefore AE=BD$.
(2)如圖,連接$DE$,
由(1)可知$AE=BD$,$\because BD=5$,$\therefore AE=5$.
由旋轉(zhuǎn)的性質(zhì)可知$\angle DCE=60^{\circ}$,$CD=CE$,
$\therefore \triangle DCE$是等邊三角形,$\therefore CD=DE$,$\angle CDE=60^{\circ}$,$\because \angle ADC=30^{\circ}$,$\therefore \angle ADE=\angle ADC+\angle CDE=90^{\circ}$,
在$Rt\triangle ADE$中,$DE=\sqrt{AE^{2}-AD^{2}}=\sqrt{5^{2}-3^{2}}=4$,
$\therefore CD=DE=4$.
7.「2023天津中考,」如圖,把△ABC以點(diǎn)A為中心逆時(shí)針旋轉(zhuǎn)得到△ADE,點(diǎn)B,C

的對應(yīng)點(diǎn)分別是點(diǎn)D,E,且點(diǎn)E在BC的延長線上,連接BD,則下列結(jié)論一定正確的是(
A
)
A.∠CAE= ∠BED
B.AB= AE
C.∠ACE= ∠ADE
D.CE= BD
答案:A 設(shè)$AD$與$BE$的交點(diǎn)為$O$(圖略),$\because$把$\triangle ABC$以點(diǎn)$A$為中心逆時(shí)針旋轉(zhuǎn)得到$\triangle ADE$,$\therefore \angle ABC=\angle ADE$,$\angle BAD=\angle CAE$,又$\because \angle AOB=\angle DOE$,$\therefore \angle BED=\angle BAD=\angle CAE$,故A正確.由旋轉(zhuǎn)的性質(zhì)得$AB=AD$,$AC=AE$,而$AB$與$AE$不一定相等,故B錯誤.由旋轉(zhuǎn)的性質(zhì)得$\angle ADE=\angle ABC$,而$\angle ACE>\angle ABC$,$\therefore \angle ACE>\angle ADE$,故C錯誤.只有當(dāng)$AB=AC$時(shí),才有$\triangle ABD\cong \triangle ACE$,才有$CE=BD$,故D錯誤.故選A.