亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

零五網(wǎng) 全部參考答案 5年中考3年模擬答案 2025年5年中考3年模擬九年級數(shù)學(xué)上冊人教版 第30頁解析答案
9.「2024山東東營中考,★☆」已知拋物線$y = ax^{2}+bx + c(a \neq 0)$的圖象如圖所示,則下列結(jié)論正確的是(
D
)

A. $abc < 0$
B. $a - b = 0$
C. $3a - c = 0$
D. $am^{2}+bm \leq a - b$($m$為任意實(shí)數(shù))
答案:D 由函數(shù)圖象可知,$a\lt0$,$b\lt0$,$c\gt0$,$\therefore abc\gt0$,故A不符合題意;$\because$ 拋物線與$x$軸的交點(diǎn)坐標(biāo)為$(-3,0)$和$(1,0)$,$\therefore$ 拋物線的對稱軸為直線$x=-\frac{2a}=\frac{-3 + 1}{2}=-1$,$\therefore b = 2a$,$\therefore 2a - b = 0$,故B不符合題意;把$(1,0)$代入解析式,得$a + b + c = 0$,將$b = 2a$代入$a + b + c = 0$,得$a + 2a + c = 0$,$\therefore 3a + c = 0$,故C不符合題意;$\because$ 拋物線的對稱軸為直線$x=-1$,且拋物線開口向下,$\therefore$ 當(dāng)$x=-1$時(shí),函數(shù)取得最大值,為$a - b + c$,$\therefore$ 對于拋物線上的任意一點(diǎn)(橫坐標(biāo)為$m$),總有$am^{2}+bm + c\leqslant a - b + c$,$\therefore am^{2}+bm\leqslant a - b$,故D符合題意.故選D.
10.「2025江蘇蘇州平江中學(xué)月考,★☆」二次函數(shù)$y = ax^{2}+6x + a$的最小值是8,則$a = $
9
。
答案:答案 9
解析 $\because$ 二次函數(shù)$y = ax^{2}+6x + a$的最小值是8,$\therefore a\gt0$,$y_{最小值}=\frac{4a^{2}-36}{4a}=8$,整理,得$a^{2}-8a - 9 = 0$,解得$a = 9$或$-1$,$\because a\gt0$,$\therefore a = 9$.
11.「2024四川成都中考,★☆」在平面直角坐標(biāo)系$xOy$中,$A(x_{1},y_{1})$,$B(x_{2},y_{2})$,$C(x_{3},y_{3})$是二次函數(shù)$y = -x^{2}+4x - 1$圖象上的三點(diǎn)。若$0 < x_{1} < 1$,$x_{2} > 4$,則$y_{1}$____
____$y_{2}$(填“>”或“<”);若對于$m < x_{1} < m + 1$,$m + 1 < x_{2} < m + 2$,$m + 2 < x_{3} < m + 3$,存在$y_{1} < y_{3} < y_{2}$,則$m$的取值范圍是____
$-\frac{1}{2}\lt m\lt1$
____。
答案:答案 $\gt$;$-\frac{1}{2}\lt m\lt1$
解析 $\because y=-x^{2}+4x - 1=-(x - 2)^{2}+3$,$\therefore$ 圖象的對稱軸為直線$x = 2$,開口向下,$\because 0\lt x_{1}\lt1$,$x_{2}\gt4$,$\therefore 2 - x_{1}\lt x_{2}-2$,即$A(x_{1},y_{1})$比$B(x_{2},y_{2})$離對稱軸的距離近,$\therefore y_{1}\gt y_{2}$;$\because m\lt x_{1}\lt m + 1$,$m + 1\lt x_{2}\lt m + 2$,$m + 2\lt x_{3}\lt m + 3$,$\therefore x_{1}\lt x_{2}\lt x_{3}$,$\because$ 對于$m\lt x_{1}\lt m + 1$,$m + 1\lt x_{2}\lt m + 2$,$m + 2\lt x_{3}\lt m + 3$,存在$y_{1}\lt y_{3}\lt y_{2}$,$\therefore x_{1}\lt2$,$x_{3}\gt2$,且$A(x_{1},y_{1})$離對稱軸的距離最遠(yuǎn),$B(x_{2},y_{2})$離對稱軸的距離最近,$\therefore 2 - x_{1}\gt x_{3}-2\gt|x_{2}-2|$,$\therefore x_{1}+x_{3}\lt4$,且$x_{2}+x_{3}\gt4$,$\because 2m + 2\lt x_{1}+x_{3}\lt2m + 4$,$2m + 3\lt x_{2}+x_{3}\lt2m + 5$,$\therefore 2m + 2\lt4$,且$2m + 5\gt4$,解得$-\frac{1}{2}\lt m\lt1$.
12.「2025浙江杭州上城期中,★☆」已知某二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)$x與縱坐標(biāo)y$的對應(yīng)值如表所示:

(1) 直接寫出$m$,$n$的值,并求當(dāng)$x$在什么范圍時(shí),$y隨x$的增大而增大。$m=$
0
,$n=$
4
;當(dāng)$x$
$\lt2$
時(shí),$y隨x$的增大而增大。
(2) 若點(diǎn)$(p,q)$在該二次函數(shù)圖象上,當(dāng)$-1 \leq p \leq 4$時(shí),求$q$的取值范圍。
$-8\leqslant q\leqslant1$

答案:解析 (1)由表格知$x=-1$時(shí),$y=-8$;$x = 5$時(shí),$y=-8$,$\therefore$ 拋物線的對稱軸為直線$x=\frac{-1 + 5}{2}=2$,$\because \frac{1 + 3}{2}=2$,$\therefore$ 點(diǎn)$(1,m)$與點(diǎn)$(3,0)$是關(guān)于直線$x = 2$對稱的點(diǎn),$\therefore m = 0$,$\because$ 當(dāng)$x = 0$時(shí),$y=-3$;當(dāng)$x = n$時(shí),$y=-3$,$\therefore \frac{0 + n}{2}=2$,$\therefore n = 4$.
結(jié)合題表可得,當(dāng)$x\lt2$時(shí),$y$隨$x$的增大而增大.
(2)$\because$ 拋物線對稱軸為直線$x = 2$,當(dāng)$x\lt2$時(shí),$y$隨$x$的增大而增大,$\therefore$ 該拋物線開口向下,當(dāng)$x = 2$時(shí),$y$取得最大值,為1,$\because |-1 - 2|\gt|4 - 2|$,$\therefore$ 當(dāng)$x=-1$時(shí),$y$取得最小值,為$-8$,$\because -1\leqslant p\leqslant4$,$\therefore -8\leqslant q\leqslant1$.
13. 設(shè)$P(x,y_{1})$,$Q(x,y_{2})分別是函數(shù)C_{1}$,$C_{2}$圖象上的點(diǎn),當(dāng)$a \leq x \leq b$時(shí),$-1 \leq y_{1}-y_{2} \leq 1$恒成立,則稱函數(shù)$C_{1}$,$C_{2}在a \leq x \leq b$上是“逼近函數(shù)”,$a \leq x \leq b$為“逼近區(qū)間”。則下列結(jié)論:①函數(shù)$y_{1} = x - 5$,$y_{2} = 3x + 2在1 \leq x \leq 2$上是“逼近函數(shù)”;②函數(shù)$y_{1} = x - 5$,$y_{2} = x^{2}-4x在3 \leq x \leq 4$上是“逼近函數(shù)”;③$0 \leq x \leq 1是函數(shù)y_{1} = x^{2}-1$,$y_{2} = 2x^{2}-x$的“逼近區(qū)間”;④$2 \leq x \leq 3是函數(shù)y_{1} = x - 5$,$y_{2} = x^{2}-4x$的“逼近區(qū)間”。其中正確的為(
②③
)
A. ②③
B. ①④
C. ①③
D. ②④
答案:A ①$y_{1}-y_{2}=-2x - 7$,在$1\leqslant x\leqslant2$上,當(dāng)$x = 1$時(shí),$y_{1}-y_{2}=-9$,當(dāng)$x = 2$時(shí),$y_{1}-y_{2}=-11$,可知$-11\leqslant y_{1}-y_{2}\leqslant-9$,故函數(shù)$y_{1}=x - 5$,$y_{2}=3x + 2$在$1\leqslant x\leqslant2$上不是“逼近函數(shù)”,①結(jié)論不正確;②$y_{1}-y_{2}=-x^{2}+5x - 5$,在$3\leqslant x\leqslant4$上,當(dāng)$x = 3$時(shí),$y_{1}-y_{2}=1$,當(dāng)$x = 4$時(shí),$y_{1}-y_{2}=-1$,所以$-1\leqslant y_{1}-y_{2}\leqslant1$,故函數(shù)$y_{1}=x - 5$,$y_{2}=x^{2}-4x$在$3\leqslant x\leqslant4$上是“逼近函數(shù)”,②結(jié)論正確;③$y_{1}-y_{2}=-x^{2}+x - 1$,在$0\leqslant x\leqslant1$上,當(dāng)$x=\frac{1}{2}$時(shí),$y_{1}-y_{2}=-\frac{3}{4}$,當(dāng)$x = 0$或1時(shí),$y_{1}-y_{2}=-1$,可知$-1\leqslant y_{1}-y_{2}\leqslant-\frac{3}{4}$,所以$-1\leqslant y_{1}-y_{2}\leqslant1$成立,故$0\leqslant x\leqslant1$是函數(shù)$y_{1}=x^{2}-1$,$y_{2}=2x^{2}-x$的“逼近區(qū)間”,③結(jié)論正確;④$y_{1}-y_{2}=-x^{2}+5x - 5$,在$2\leqslant x\leqslant3$上,當(dāng)$x=\frac{5}{2}$時(shí),$y_{1}-y_{2}=\frac{5}{4}$,當(dāng)$x = 2$或3時(shí),$y_{1}-y_{2}=1$,可知$1\leqslant y_{1}-y_{2}\leqslant\frac{5}{4}$,故$2\leqslant x\leqslant3$不是函數(shù)$y_{1}=x - 5$,$y_{2}=x^{2}-4x$的“逼近區(qū)間”,④結(jié)論不正確.故選A.
例題 「2025浙江寧波慈溪期中」若二次函數(shù)$y = x^{2}+2x - 3(m \leq x \leq 2)的最小值為-4$,最大值為5,則$m$的取值范圍是____。
答案:
答案 $-4\leqslant m\leqslant-1$
解析 如圖,$\because y=x^{2}+2x - 3=(x + 1)^{2}-4$,$\therefore$ 對稱軸為直線$x=-1$,函數(shù)的最小值為$-4$,$\because m\leqslant x\leqslant2$時(shí),函數(shù)的最小值為$-4$,最大值為5,$\therefore$ 令$y = 5$,則$(x + 1)^{2}-4 = 5$,解得$x_{1}=-4$,$x_{2}=2$,$\therefore m$的取值范圍為$-4\leqslant m\leqslant-1$.
1V
變式1【定軸動(dòng)區(qū)間】「2025江蘇蘇州振華中學(xué)月考」已知$y = x^{2}-4x + 3$,當(dāng)$m \leq x \leq m + 2$時(shí),函數(shù)$y的最小值為\frac{5}{4}$,則$m$的值為
$-\frac{3}{2}$或$\frac{7}{2}$
。
答案:答案 $-\frac{3}{2}$或$\frac{7}{2}$
解析 $\because$ 二次函數(shù)$y=x^{2}-4x + 3=(x - 2)^{2}-1$,$\therefore$ 對稱軸為直線$x = 2$.
①若$m + 2\lt2$,即$m\lt0$,則當(dāng)$x = m + 2$時(shí),$y$的最小值是$\frac{5}{4}$,$\therefore (m + 2 - 2)^{2}-1=m^{2}-1=\frac{5}{4}$,$\therefore m=-\frac{3}{2}$或$m=\frac{3}{2}$(舍去);
②若$m\gt2$,則當(dāng)$x = m$時(shí),$y$的最小值為$\frac{5}{4}$,$\therefore (m - 2)^{2}-1=\frac{5}{4}$,$\therefore m=\frac{7}{2}$或$m=\frac{1}{2}$(舍去);
③若$m\lt2\lt m + 2$,則當(dāng)$x = 2$時(shí),$y$的最小值為$-1$,不符合題意.
綜上所述,$m$的值為$-\frac{3}{2}$或$\frac{7}{2}$.
變式2【動(dòng)軸定區(qū)間】當(dāng)$1 \leq x \leq 4$時(shí),函數(shù)$y = x^{2}-2ax - 1有最小值-5$,則實(shí)數(shù)$a$的值是
2
。
答案:答案 2
解析 易知函數(shù)$y=x^{2}-2ax - 1$的圖象開口向上,對稱軸為直線$x=-\frac{-2a}{2\times1}=a$,
若$a\leqslant1$,則當(dāng)$x = 1$時(shí),函數(shù)取最小值,
此時(shí)$y = 1-2a - 1=-5$,解得$a = 2.5$(不合題意,舍去);
若$a\geqslant4$,則當(dāng)$x = 4$時(shí),函數(shù)取最小值,
此時(shí)$y = 16-8a - 1=-5$,解得$a = 2.5$(不合題意,舍去);
若$1\lt a\lt4$,則當(dāng)$x = a$時(shí),函數(shù)取最小值,
此時(shí)$y=a^{2}-2a^{2}-1=-5$,解得$a_{1}=2$,$a_{2}=-2$(舍去).
綜上,實(shí)數(shù)$a$的值是2.
上一頁 下一頁