1.「2025重慶南川期中」關(guān)于拋物線$y = -x^{2}+2x - 3$的判斷,下列說法正確的是(
D
)
A. 拋物線的開口方向向上
B. 拋物線的對(duì)稱軸是直線$x = -1$
C. 當(dāng)$x < 1$時(shí),$y隨x$的增大而減小
D. 拋物線與$y軸的交點(diǎn)坐標(biāo)為(0,-3)$
答案:D $\because$ 拋物線$y=-\frac{x^{2}}{2}+2x - 3=-\frac{1}{2}(x - 1)^{2}-\frac{5}{2}$,$\therefore$ 該拋物線的開口向下,拋物線的對(duì)稱軸是直線$x = 1$,當(dāng)$x\lt1$時(shí),$y$隨$x$的增大而增大,故選項(xiàng)A、B、C說法錯(cuò)誤,不符合題意;$\because$ 當(dāng)$x = 0$時(shí),$y=-3$,$\therefore$ 拋物線與$y$軸的交點(diǎn)坐標(biāo)為$(0,-3)$,故選項(xiàng)D正確,符合題意.故選D.
2.「2025浙江湖州南潯期中」已知二次函數(shù)$y = ax^{2}+bx + c$,其中$a < 0$,$b < 0$,$c > 0$,則該二次函數(shù)圖象大致是(
B
)

答案:B $\because$ 二次函數(shù)$y = ax^{2}+bx + c$,$a\lt0$,$b\lt0$,$c\gt0$,$\therefore$ 該函數(shù)圖象開口向下,對(duì)稱軸在$y$軸的左側(cè),與$y$軸交于正半軸,只有B選項(xiàng)中的圖象符合.故選B.
方法解讀 拋物線的“左同右異”
對(duì)于二次函數(shù)$y = ax^{2}+bx + c(a\neq0)$,圖象對(duì)稱軸為直線$x=-\frac{2a}$,易得當(dāng)$a$,$b$同號(hào)時(shí),$x=-\frac{2a}\lt0$,即拋物線的對(duì)稱軸在$y$軸左側(cè);反之當(dāng)$a$,$b$異號(hào)時(shí),拋物線的對(duì)稱軸在$y$軸右側(cè),簡(jiǎn)記為“左同右異”.
3.「2025重慶開州月考」若點(diǎn)$A(-\frac{5}{2},y_{1})$,$B(-\frac{3}{2},y_{2})$,$C(\frac{3}{2},y_{3})$為二次函數(shù)$y = -x^{2}-2x + 1$圖象上的三點(diǎn),則$y_{1}$,$y_{2}$,$y_{3}$的大小關(guān)系為
$y_{2}\gt y_{1}\gt y_{3}$
。
答案:答案 $y_{2}\gt y_{1}\gt y_{3}$
解析 拋物線解析式配方成頂點(diǎn)式為$y=-(x + 1)^{2}+2$,$\because a=-1\lt0$,$\therefore$ 拋物線開口向下,對(duì)稱軸是直線$x=-1$,離對(duì)稱軸越遠(yuǎn),函數(shù)值越小.$\because -1-(-\frac{5}{2}) = 1.5$,$-1-(-\frac{3}{2}) = 0.5$,$\frac{3}{2}-(-1)=2.5$,$0.5\lt1.5\lt2.5$,$\therefore y_{2}\gt y_{1}\gt y_{3}$.
4. 已知拋物線$y = x^{2}+4x - 1$,將拋物線向右平移5個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,則新圖象與$y$軸的交點(diǎn)坐標(biāo)為
$(0,5)$
。
答案:答案 $(0,5)$
解析 $\because y=x^{2}+4x - 1=(x + 2)^{2}-5$,$\therefore$ 將拋物線向右平移5個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,所得拋物線的解析式為$y=(x + 2 - 5)^{2}-5 + 1$,即$y=(x - 3)^{2}-4$.當(dāng)$x = 0$時(shí),$y = 5$.故答案為$(0,5)$.
5.「2025北京西城期中」已知二次函數(shù)$y = x^{2}-2x - 3$。
(1) 將$y = x^{2}-2x - 3化成y = a(x - h)^{2}+k$的形式,并寫出拋物線的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。
(2) 直接寫出當(dāng)$-1 < x < 2$時(shí),函數(shù)值$y$的取值范圍。
答案:解析 (1)$y=x^{2}-2x - 3=x^{2}-2x + 1 - 1 - 3=(x - 1)^{2}-4$.
拋物線開口向上,對(duì)稱軸為直線$x = 1$,頂點(diǎn)坐標(biāo)是$(1,-4)$.
(2)如圖,畫出函數(shù)圖象,由圖象可知,當(dāng)$-1\lt x\lt2$時(shí),函數(shù)值$y$的取值范圍為$-4\leqslant y\lt0$.

6.「2025浙江杭州蕭山期中」如圖所示的是二次函數(shù)$y = ax^{2}+bx + c$圖象的一部分,其對(duì)稱軸為直線$x = -1$,且過點(diǎn)$(-3,0)$。下列說法:①$abc < 0$;②$2a + b = 0$;③$a + b + c = 0$;④若$(-5,y_{1})$,$(2,y_{2})$是拋物線上的兩點(diǎn),則$y_{1} > y_{2}$。其中說法正確的個(gè)數(shù)是(
C
)

A. 1
B. 2
C. 3
D. 4
答案:C $\because$ 二次函數(shù)的圖象開口向上,$\therefore a\gt0$,$\because$ 二次函數(shù)的圖象與$y$軸的交點(diǎn)在負(fù)半軸上,$\therefore c\lt0$,$\because$ 對(duì)稱軸是直線$x=-1$,$\therefore -\frac{2a}=-1$,$\therefore b = 2a\gt0$,$\therefore abc\lt0$,$2a - b = 0$,故①說法正確,②說法不正確;$\because$ 對(duì)稱軸為直線$x=-1$,且過點(diǎn)$(-3,0)$,$\therefore$ 圖象一定過點(diǎn)$(1,0)$,則$a + b + c = 0$,故③說法正確;由題圖得,當(dāng)$x\gt - 1$時(shí),$y$隨$x$的增大而增大,$\because (-5,y_{1})$關(guān)于直線$x=-1$的對(duì)稱點(diǎn)的坐標(biāo)是$(3,y_{1})$,$3\gt2$,$\therefore y_{1}\gt y_{2}$,故④說法正確.綜上所述,正確的結(jié)論有3個(gè).故選C.
7.「2025上海浦東惠南學(xué)區(qū)月考,★☆」已知拋物線$y = ax^{2}+bx + c(a \neq 0)上部分點(diǎn)的橫坐標(biāo)x和縱坐標(biāo)y$的對(duì)應(yīng)值如下表:

根據(jù)表格,下列判斷正確的是(
C
)
A. 該拋物線開口向上
B. 在對(duì)稱軸左側(cè),$y隨x$的增大而減小
C. 該拋物線一定經(jīng)過點(diǎn)$(-1,-\frac{15}{2})$
D. 該拋物線的對(duì)稱軸是直線$x = 1$
答案:C 由題表中點(diǎn)$(0,-5)$,$(4,-5)$,可知函數(shù)圖象的對(duì)稱軸為直線$x = 2$,故D錯(cuò)誤;由題表數(shù)據(jù)可知,當(dāng)$x\gt2$時(shí),$y$隨$x$的增大而減小,當(dāng)$x\lt2$時(shí),$y$隨$x$的增大而增大,故拋物線$y = ax^{2}+bx + c$的開口向下,故A、B錯(cuò)誤;點(diǎn)$(5,-\frac{15}{2})$關(guān)于直線$x = 2$的對(duì)稱點(diǎn)為$(-1,-\frac{15}{2})$,$\therefore$ 該拋物線一定經(jīng)過點(diǎn)$(-1,-\frac{15}{2})$,故C正確.故選C.
8.「2024四川樂山中考,★☆」已知二次函數(shù)$y = x^{2}-2x(-1 \leq x \leq t - 1)$,當(dāng)$x = -1$時(shí),函數(shù)取得最大值;當(dāng)$x = 1$時(shí),函數(shù)取得最小值,則$t$的取值范圍是(
C
)
A. $0 < t \leq 2$
B. $0 < t \leq 4$
C. $2 \leq t \leq 4$
D. $t \geq 2$
答案:C $\because y=x^{2}-2x=(x - 1)^{2}-1$,$\therefore$ 拋物線的對(duì)稱軸為直線$x = 1$,且頂點(diǎn)坐標(biāo)為$(1,-1)$.$\because 1-(-1)=3 - 1$,$\therefore x=-1$和$x = 3$時(shí)的函數(shù)值相等.$\because -1\leqslant x\leqslant t - 1$,當(dāng)$x=-1$時(shí),函數(shù)取得最大值,$\therefore t - 1\leqslant3$,又$\because$ 當(dāng)$x = 1$時(shí),函數(shù)取得最小值,$\therefore t - 1\geqslant1$,$\therefore 1\leqslant t - 1\leqslant3$,解得$2\leqslant t\leqslant4$.故選C.