1.「2024 內(nèi)蒙古通遼中考」手工課堂上,老師給每個制作小組發(fā)

放一把花折傘和制作花折傘的材料及工具.同學們認真觀察后,組裝了花折傘的骨架,粘貼了彩色傘面,制作出精美的花折傘.



【模型建立】
(1)如圖 1,從花折傘中抽象出“牽形圖”,$AM = AN$,$DM = DN$.求證$∠AMD = ∠AND$.
【模型應用】
(2)如圖 2,在$△AMC$中,$∠MAC的平分線AD交MC于點D$.請你從以下兩個條件:①$∠AMD = 2∠C$;②$AC = AM + MD$中選擇一個作為已知條件,另一個作為結(jié)論,并寫出結(jié)論成立的證明過程.(注:只需選擇一種情況作答)
【拓展提升】
(3)如圖 3,$AC為\odot O$的直徑,$\overset{\frown}{AB} = \overset{\frown}{BC}$,$∠BAC的平分線AD交BC于點E$,交$\odot O于點D$,連接$CD$.求證:$AE = 2CD$.
答案:解析
(1) 證明:在$\triangle ADM$和$\triangle ADN$中,$\left\{\begin{array}{l} AM = AN,\\ DM = DN,\\ AD = AD,\end{array}\right.$
$\therefore \triangle ADM\cong \triangle ADN(SSS)$,
$\therefore ∠AMD = ∠AND$。
(2) 選擇②為條件,①為結(jié)論,
如圖,在$AC$上取點$N$,使$AN = AM$,連接$DN$,
$\because AD$平分$∠MAC$,$\therefore ∠DAM = ∠DAN$,
在$\triangle ADM$和$\triangle ADN$中,
$\because AM = AN$,$∠DAM = ∠DAN$,$AD = AD$,
$\therefore \triangle ADM\cong \triangle ADN(SAS)$,
$\therefore DM = DN$,$∠AMD = ∠AND$,
$\because AC = AM + MD$,$AC = AN + NC$,
$\therefore DM = CN$,$\therefore DN = CN$,$\therefore ∠C = ∠CDN$,
$\therefore ∠AMD = ∠AND = ∠CDN + ∠C = 2∠C$。
(亦可選擇①為條件,②為結(jié)論,證明略)
(3) 證明:如圖,連接$BD$,取$AE$的中點$F$,連接$BF$,
$\because AD$平分$∠BAC$,$\therefore ∠BAD = ∠DAC$,$\therefore \overset{\frown}{DC} = \overset{\frown}{BD}$,
$\therefore BD = CD$,$\therefore ∠BCD = ∠CBD$,$\because AC$為$\odot O$的直徑,
$\therefore ∠ABC = 90^{\circ}$,$\therefore AE = 2BF = 2AF$,$\therefore ∠ABF = ∠BAF$,
$\because ∠BAF = ∠BCD$,$\therefore ∠ABF = ∠CBD$,$\because \overset{\frown}{AB} = \overset{\frown}{BC}$,
$\therefore AB = BC$,$\therefore \triangle ABF\cong \triangle CBD(ASA)$,$\therefore BF = BD = CD$,
$\therefore AE = 2CD$。