(1)由題意,點(diǎn)P坐標(biāo)為$(9 - 2t, 4),$點(diǎn)Q坐標(biāo)為$(t, 0)。$
因?yàn)?A(0, 4),$所以$AP = |9 - 2t - 0| = |9 - 2t|,$$OQ = t。$
由$AP = OQ$得$|9 - 2t| = t。$
當(dāng)$t \leq 4.5$時,$9 - 2t = t,$解得$t = 3;$
當(dāng)$t > 4.5$時,$2t - 9 = t,$解得$t = 9。$
綜上,$t = 3$或$t = 9。$
(2)四邊形$AOQP$為梯形,高為點(diǎn)$A$到$x$軸的距離,即$4。$
面積$S = \frac{(AP + OQ) \times 4}{2} = 10,$即$(|9 - 2t| + t) \times 2 = 10,$化簡得$|9 - 2t| + t = 5。$
當(dāng)$t \leq 4.5$時,$9 - 2t + t = 5,$解得$t = 4,$此時點(diǎn)$P$的坐標(biāo)為$(9 - 2 \times 4, 4) = (1, 4);$
當(dāng)$t > 4.5$時,$2t - 9 + t = 5,$解得$t = \frac{14}{3},$此時點(diǎn)$P$的坐標(biāo)為$(9 - 2 \times \frac{14}{3}, 4) = (-\frac{1}{3}, 4)。$
綜上,點(diǎn)$P$的坐標(biāo)為$(1, 4)$或$(-\frac{1}{3}, 4)。$