(1)當(dāng)△ABC為銳角三角形時,$a^2 + b^2 > c^2。$
證明:過點$A$作$AD \perp BC$于點$D。$
設(shè)$CD = x,$則$BD = a - x。$
在$Rt\triangle ADC$中,$AD^2 = b^2 - x^2;$在$Rt\triangle ADB$中,$AD^2 = c^2 - (a - x)^2。$
所以$b^2 - x^2 = c^2 - (a - x)^2,$展開得$b^2 - x^2 = c^2 - a^2 + 2ax - x^2,$移項可得$a^2 + b^2 - c^2 = 2ax。$
因為$a > 0,$$x > 0,$所以$2ax > 0,$即$a^2 + b^2 - c^2 > 0,$所以$a^2 + b^2 > c^2。$
(2)當(dāng)△ABC為鈍角三角形時,$a^2 + b^2 < c^2。$
證明:過點$A$作$AD \perp BC$交$BC$的延長線于點$D。$
設(shè)$CD = x,$則$BD = a + x。$
在$Rt\triangle ADC$中,$AD^2 = b^2 - x^2;$在$Rt\triangle ADB$中,$AD^2 = c^2 - (a + x)^2。$
所以$b^2 - x^2 = c^2 - (a + x)^2,$展開得$b^2 - x^2 = c^2 - a^2 - 2ax - x^2,$移項可得$a^2 + b^2 - c^2 = -2ax。$
因為$a > 0,$$x > 0,$所以$-2ax < 0,$即$a^2 + b^2 - c^2 < 0,$所以$a^2 + b^2 < c^2。$
(3)連接$AC。$
在$Rt\triangle ABC$中,$AC^2 = AB^2 + BC^2 = 80^2 + 60^2 = 10000,$所以$AC = 100m。$
在$\triangle ACD$中,$AC = 100m,$$CD = 90m,$$AD = 110m。$
根據(jù)海倫公式,$\triangle ACD$的半周長$p = \frac{100 + 90 + 110}{2} = 150m,$面積$S_{\triangle ACD} = \sqrt{p(p - AC)(p - CD)(p - AD)} = \sqrt{150×(150 - 100)×(150 - 90)×(150 - 110)} = \sqrt{150×50×60×40} = 3000\sqrt{2}m^2。$
$\triangle ABC$的面積$S_{\triangle ABC} = \frac{1}{2}×AB×BC = \frac{1}{2}×80×60 = 2400m^2。$
四邊形$ABCD$的面積$S = S_{\triangle ABC} + S_{\triangle ACD} = 2400 + 3000\sqrt{2}m^2。$