(1)$BE=CF。$
證明:
$\because BE// CF,$
$\therefore \angle FCD=\angle EBD,$$\angle CFD=\angle BED,$
$\because AD$是$\triangle ABC$的中線,
$\therefore BD=CD。$
在$\triangle BDE$和$\triangle CDF$中,
$\begin{cases}\angle FCD=\angle EBD,\\\angle CFD=\angle BED,\\BD=CD.\end{cases}$
$\therefore \triangle BDE\cong \triangle CDF(AAS),$
$\therefore BE=CF。$
(2)$AD$是$\triangle ABC$的中線。
證明:
$\because BE// CF,$
$\therefore \angle FCD=\angle EBD,$$\angle CFD=\angle BED,$
在$\triangle BDE$和$\triangle CDF$中,
$\begin{cases}\angle FCD=\angle EBD,\\\angle CFD=\angle BED,\\BE=CF.\end{cases}$
$\therefore \triangle BDE\cong \triangle CDF(AAS),$
$\therefore BD=CD,$
$\therefore AD$是$\triangle ABC$的中線。