亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第57頁

第57頁

信息發(fā)布者:
解:原式$=(5xy-\frac{9}{4}xy-\frac{1}{4}xy)+(-\frac{9}{2}x^{3}y^{2}+\frac{1}{2}x^{3}y^{2})-x^{3}y$
$=(5 - \frac{9}{4}-\frac{1}{4})xy+(-\frac{9}{2}+\frac{1}{2})x^{3}y^{2}-x^{3}y$
$=\frac{5}{2}xy - 4x^{3}y^{2}-x^{3}y$
解:原式$=2(m - n)^{2}-(m - n)^{2}-(m - n)^{2}+(-1 + 4)(m - n)^{3}$
$=(2 - 1 - 1)(m - n)^{2}+3(m - n)^{3}$
$=3(m - n)^{3}$
解:原式$=3x^{2}y^{2}-7x^{2}y^{2}+4x^{2}y^{2}+2xy-\frac{3}{2}xy + 2$
$=(3 - 7 + 4)x^{2}y^{2}+(2-\frac{3}{2})xy+2$
$=0\times x^{2}y^{2}+\frac{1}{2}xy + 2$
$=\frac{1}{2}xy+2$
把$x = 2,$$y=\frac{1}{4}$代入原式,得:
$\frac{1}{2}\times2\times\frac{1}{4}+2$
$=\frac{1}{4}+2$
$=\frac{9}{4}$
解:因?yàn)?3x^{a+1}y^{b-1}$與$\frac{2}{5}x^{2}y$是同類項(xiàng),所以相同字母的指數(shù)相同,即$a + 1=2,$$b - 1=1。$解得$a=1,$$b=2。$
原式$2a^{2}b + 3a^{2}b-\frac{1}{2}a^{2}b,$合并同類項(xiàng)可得:
$\begin{aligned}&(2 + 3-\frac{1}{2})a^{2}b\\=&(5-\frac{1}{2})a^{2}b\\=&\frac{9}{2}a^{2}b\end{aligned}$
把$a = 1,$$b = 2$代入$\frac{9}{2}a^{2}b,$得:
$\frac{9}{2}\times1^{2}\times2=\frac{9}{2}\times1\times2 = 9$
所以,原式的值為$9。$
因?yàn)槎囗?xiàng)式不含$x^3$和$x^2$的項(xiàng),所以$x^3$和$x^2$項(xiàng)的系數(shù)為$0。$
對(duì)于$x^3$項(xiàng):$m - 2 = 0,$解得$m = 2。$
對(duì)于$x^2$項(xiàng):$2(n + 1) = 0,$解得$n = -1。$
將$m = 2,$$n = -1$代入多項(xiàng)式,得:
$2x^4 + (2 - 2)x^3 + 2(-1 + 1)x^2 + 3x + \frac{-1}{2} = 2x^4 + 3x - \frac{1}{2}。$
當(dāng)$x = -1$時(shí),多項(xiàng)式的值為:
$2×(-1)^4 + 3×(-1) - \frac{1}{2} = 2×1 - 3 - \frac{1}{2} = 2 - 3 - \frac{1}{2} = -1 - \frac{1}{2} = -\frac{3}{2}。$
綜上,這個(gè)多項(xiàng)式為$2x^4 + 3x - \frac{1}{2},$當(dāng)$x = -1$時(shí)該多項(xiàng)式的值為$-\frac{3}{2}。$
解:對(duì)代數(shù)式$-5 + \frac{2}{3}x^2 - 3x + 4 + \frac{4}{3}x^2 + \frac{1}{2}x + 2 - 2x^2 + \frac{5}{2}x$進(jìn)行化簡(jiǎn):
$\begin{aligned}&(-5 + 4 + 2) + (\frac{2}{3}x^2 + \frac{4}{3}x^2 - 2x^2) + (-3x + \frac{1}{2}x + \frac{5}{2}x)\\=&1 + (\frac{6}{3}x^2 - 2x^2) + (-3x + 3x)\\=&1 + (2x^2 - 2x^2) + 0\\=&1\end{aligned}$
化簡(jiǎn)后的結(jié)果為$1,$不含有$x,$所以無論$x$取何值,代數(shù)式的值都為$1,$因此小明和小亮選擇不同的$x$值代入計(jì)算,結(jié)果相同。
解:因?yàn)?(a + 1)^2 + |b - 2| = 0,$且$(a + 1)^2 \geq 0,$$|b - 2| \geq 0,$所以$a + 1 = 0,$$b - 2 = 0,$解得$a = -1,$$b = 2。$
對(duì)代數(shù)式$a^2b^2 + 3ab - 7a^2b^2 - \frac{5}{2}ab + 1 + 5a^2b^2$進(jìn)行化簡(jiǎn):
$\begin{aligned}&a^2b^2 + 3ab - 7a^2b^2 - \frac{5}{2}ab + 1 + 5a^2b^2\\=&(a^2b^2 - 7a^2b^2 + 5a^2b^2) + (3ab - \frac{5}{2}ab) + 1\\=&(-a^2b^2) + (\frac{6}{2}ab - \frac{5}{2}ab) + 1\\=&-a^2b^2 + \frac{1}{2}ab + 1\end{aligned}$
將$a = -1,$$b = 2$代入化簡(jiǎn)后的式子:
$\begin{aligned}&-(-1)^2 \times 2^2 + \frac{1}{2} \times (-1) \times 2 + 1\\=&-1 \times 4 + (-1) + 1\\=&-4 - 1 + 1\\=&-4\end{aligned}$
故代數(shù)式的值為$-4。$
【答案】:
???
解:?原式$=\frac {1}{2}xy+2??$
??把$x=2,y=\frac {1}{4}$代入原式$=\frac {1}{2}×2×\frac {1}{4}+2=\frac {9}{4}??$

【解析】:
$3x^{2}y^{2}+2xy - 7x^{2}y^{2}-\frac{3}{2}xy + 2 + 4x^{2}y^{2}$
$=(3x^{2}y^{2}-7x^{2}y^{2}+4x^{2}y^{2})+(2xy-\frac{3}{2}xy)+2$
$=\frac{1}{2}xy+2$
當(dāng)$x = 2$,$y= \frac{1}{4}$時(shí),
$\frac{1}{2}xy+2=\frac{1}{2}×2×\frac{1}{4}+2=\frac{1}{4}+2=\frac{9}{4}$
$\frac{9}{4}$