【答案】:
???
解:?原式$=\frac {1}{2}xy+2??$
??把$x=2,y=\frac {1}{4}$代入原式$=\frac {1}{2}×2×\frac {1}{4}+2=\frac {9}{4}??$
【解析】:
$3x^{2}y^{2}+2xy - 7x^{2}y^{2}-\frac{3}{2}xy + 2 + 4x^{2}y^{2}$
$=(3x^{2}y^{2}-7x^{2}y^{2}+4x^{2}y^{2})+(2xy-\frac{3}{2}xy)+2$
$=\frac{1}{2}xy+2$
當(dāng)$x = 2$,$y= \frac{1}{4}$時(shí),
$\frac{1}{2}xy+2=\frac{1}{2}×2×\frac{1}{4}+2=\frac{1}{4}+2=\frac{9}{4}$
$\frac{9}{4}$