$解:$
$1. 作\triangle ABC的外接圓\odot O,連接OB,OC,過點(diǎn)O作OE\perp BC于點(diǎn)E,OF\perp AD于點(diǎn)F。$
$因?yàn)閈angle BAC = 45^{\circ},根據(jù)圓周角定理\angle BOC=2\angle BAC,所以\angle BOC = 90^{\circ}。$
$已知BD = 2,CD = 3,則BC=BD + CD=5。$
$由于OE\perp BC,根據(jù)垂徑定理BE=\frac{1}{2}BC=\frac{5}{2}(垂徑定理:垂直于弦的直徑平分弦)。$
$在Rt\triangle BOC中,OB = OC(半徑相等),BC = 5,由勾股定理OB^{2}+OC^{2}=BC^{2},且OB = OC,可得2OB^{2}=25,則OB=\frac{5\sqrt{2}}{2}。$
$在Rt\triangle BOE中,OB=\frac{5\sqrt{2}}{2},BE=\frac{5}{2},根據(jù)勾股定理OE=\sqrt{OB^{2}-BE^{2}}=\sqrt{(\frac{5\sqrt{2}}{2})^{2}-(\frac{5}{2})^{2}}=\frac{5}{2}。$
$2. 因?yàn)镺E\perp BC,OF\perp AD,AD\perp BC,所以四邊形OEDF是矩形,則DF = OE=\frac{5}{2},OF = ED。$
$又因?yàn)镋D=BE - BD=\frac{5}{2}-2=\frac{1}{2},所以O(shè)F=\frac{1}{2}。$
$連接OA,OA = OB=\frac{5\sqrt{2}}{2}。$
$在Rt\triangle AOF中,根據(jù)勾股定理AF=\sqrt{OA^{2}-OF^{2}}=\sqrt{(\frac{5\sqrt{2}}{2})^{2}-(\frac{1}{2})^{2}}=\sqrt{\frac{50 - 1}{4}}=\frac{7}{2}。$
$3. 最后求AD的長(zhǎng):$
$因?yàn)锳D=AF + FD,AF=\frac{7}{2},F(xiàn)D=\frac{5}{2},所以AD=\frac{7}{2}+\frac{5}{2}=6。$
$綜上,AD的長(zhǎng)為6。$