(1)$\triangle ABC$是等腰三角形。理由如下:
將$x=-1$代入方程$(a + c)x^{2}+2bx+(a - c)= 0,$得:
$(a + c)(-1)^2 + 2b(-1) + (a - c) = 0,$
化簡(jiǎn)得:$a + c - 2b + a - c = 0,$即$2a - 2b = 0,$解得$a = b。$
故$\triangle ABC$是等腰三角形。
(2)$\triangle ABC$是直角三角形。理由如下:
方程有兩個(gè)相等實(shí)數(shù)根,
$\Delta = (2b)^2 - 4(a + c)(a - c) = 4b^2 - 4(a^2 - c^2) = 4(b^2 + c^2 - a^2),$
令$\Delta = 0,$得$b^2 + c^2 - a^2 = 0,$即$a^2 = b^2 + c^2。$
故$\triangle ABC$是直角三角形。
(3)方程的根為$x_1 = 0,$$x_2 = -1。$理由如下:
$\triangle ABC$是等邊三角形,則$a = b = c。$
原方程化為$(a + a)x^2 + 2ax + (a - a) = 0,$即$2ax^2 + 2ax = 0。$
提取公因式$2ax,$得$2ax(x + 1) = 0。$
$\because a \neq 0,$$\therefore x = 0$或$x = -1。$
故方程的根為$x_1 = 0,$$x_2 = -1。$