設(shè)經(jīng)過$ t $秒,$\triangle AMN$的面積等于矩形$ABCD$面積的$\frac{1}{9}。$
矩形$ABCD$的面積為$AB \times BC = 3 \times 6 = 18 \, cm^2,$則$\triangle AMN$的面積需為$18 \times \frac{1}{9} = 2 \, cm^2。$
由題意可知,動(dòng)點(diǎn)$M$的速度為$1 \, cm/s,$則$AM = t \, cm;$動(dòng)點(diǎn)$N$的速度為$2 \, cm/s,$則$DN = 2t \, cm,$因?yàn)?AD = BC = 6 \, cm,$所以$AN = AD - DN = 6 - 2t \, cm。$
由于$\angle A = 90^\circ,$所以$\triangle AMN$為直角三角形,其面積公式為$\frac{1}{2} \times AM \times AN。$根據(jù)題意可列方程:
$\frac{1}{2} \times t \times (6 - 2t) = 2$
化簡(jiǎn)方程:
$\frac{t(6 - 2t)}{2} = 2 \implies t(6 - 2t) = 4 \implies 6t - 2t^2 = 4 \implies t^2 - 3t + 2 = 0$
解方程$t^2 - 3t + 2 = 0,$可得$(t - 1)(t - 2) = 0,$解得$t = 1$或$t = 2。$
檢驗(yàn):當(dāng)$t = 1$時(shí),$AM = 1 \, cm,$$AN = 6 - 2 \times 1 = 4 \, cm,$均未超過矩形邊長(zhǎng);當(dāng)$t = 2$時(shí),$AM = 2 \, cm,$$AN = 6 - 2 \times 2 = 2 \, cm,$也均未超過矩形邊長(zhǎng),所以$t = 1$和$t = 2$均符合題意。
答:經(jīng)過$1$秒或$2$秒。