答題卡(17題):
(1)
解:由方程 $(x - 1)^{2} = 3$,
開方得:
$x - 1 = \pm \sqrt{3}$
解得:
$x_{1} = 1 + \sqrt{3}$
$x_{2} = 1 - \sqrt{3}$
(2)
解:由方程 $x^{2} - 3x + 1 = 0$,
使用公式法,其中 $a = 1, b = -3, c = 1$,
判別式 $\Delta = b^{2} - 4ac = 9 - 4 = 5$,
所以:
$x = \frac{3 \pm \sqrt{5}}{2}$
解得:
$x_{1} = \frac{3 + \sqrt{5}}{2}$
$x_{2} = \frac{3 - \sqrt{5}}{2}$
(3)
解:由方程 $2x^{2} = x$,
移項(xiàng)得:
$2x^{2} - x = 0$
提取公因式x得:
$x(2x - 1) = 0$
解得:
$x_{1} = 0$
$x_{2} = \frac{1}{2}$
(4)
解:由方程 $6x^{2} - x - 12 = 0$,
移項(xiàng)并除以6得:
$x^{2} - \frac{1}{6}x = 2$
配方得:
$x^{2} - \frac{1}{6}x + \left(\frac{1}{12}\right)^{2} = 2 + \left(\frac{1}{12}\right)^{2}$
即:
$\left(x - \frac{1}{12}\right)^{2} = \frac{289}{144}$
開方得:
$x - \frac{1}{12} = \pm \frac{17}{12}$
解得:
$x_{1} = \frac{3}{2}$
$x_{2} = -\frac{4}{3}$