(1)
$3y(y - 1)- 2(y - 1)=0$
$(y - 1)(3y - 2)=0$
則$y - 1 = 0$或$3y - 2 = 0$
解得$y_{1}=1$,$y_{2}=\frac{2}{3}$
(2)
對于方程$x^{2}-2x - 2 = 0$,其中$a = 1$,$b=-2$,$c = - 2$
根據求根公式$x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$
$\Delta=b^{2}-4ac=(-2)^{2}-4×1×(-2)=4 + 8 = 12$
$x=\frac{2\pm\sqrt{12}}{2}=\frac{2\pm2\sqrt{3}}{2}=1\pm\sqrt{3}$
即$x_{1}=1+\sqrt{3}$,$x_{2}=1 - \sqrt{3}$
(3)
$x^{2}+5x + 3 = 0$
$x^{2}+5x=-3$
$x^{2}+5x+\frac{25}{4}=-3+\frac{25}{4}$
$(x+\frac{5}{2})^{2}=\frac{13}{4}$
$x+\frac{5}{2}=\pm\frac{\sqrt{13}}{2}$
$x=-\frac{5}{2}\pm\frac{\sqrt{13}}{2}$
即$x_{1}=-\frac{5}{2}+\frac{\sqrt{13}}{2}$,$x_{2}=-\frac{5}{2}-\frac{\sqrt{13}}{2}$
(4)
$(3x + 1)^{2}-4(x - 5)^{2}=0$
$(3x + 1 + 2x - 10)(3x + 1-2x + 10)=0$
$(5x - 9)(x + 11)=0$
則$5x - 9 = 0$或$x + 11 = 0$
解得$x_{1}=\frac{9}{5}$,$x_{2}=-11$