解:(1)作$CD\bot AB$于$D。$
因?yàn)?3^{2}+4^{2}=5^{2},$即$AC^{2}+BC^{2}=AB^{2},$所以$\triangle ABC$是直角三角形,$\angle ACB = 90^{\circ}。$
根據(jù)三角形面積公式$S_{\triangle ABC}=\frac{1}{2}AC\cdot BC=\frac{1}{2}AB\cdot CD,$已知$AC = 3\,\text{cm},$$BC = 4\,\text{cm},$$AB = 5\,\text{cm},$則$\frac{1}{2}\times3\times4=\frac{1}{2}\times5\times CD,$解得$CD=\frac{12}{5}=2.4\,\text{cm}。$
因?yàn)閳A心$C$到$AB$的距離$d = 2.4\,\text{cm},$圓的半徑$R = 2\,\text{cm},$$d>R,$所以直線$AB$與$\odot C$相離。
(2)因?yàn)橹本€$AB$與$\odot C$相切,圓心$C$到$AB$的距離$d$等于圓的半徑$r,$由(1)知$d = 2.4\,\text{cm},$所以$r = 2.4\,\text{cm}。$
(3)當(dāng)直線$AB$與$\odot C$相切時(shí),$r = 2.4\,\text{cm},$此時(shí)線段$AB$與$\odot C$有一個(gè)公共點(diǎn);當(dāng)$\odot C$與線段$AB$的端點(diǎn)$A$或$B$重合時(shí)($\odot C$半徑足夠大),也只有一個(gè)公共點(diǎn),此時(shí)$r$的范圍是$3\,\text{cm}<r\leqslant4\,\text{cm}$(當(dāng)$r = 3\,\text{cm}$時(shí),$\odot C$經(jīng)過(guò)$A$點(diǎn),當(dāng)$r = 4\,\text{cm}$時(shí),$\odot C$經(jīng)過(guò)$B$點(diǎn))。所以$r$的取值范圍是$r = 2.4\,\text{cm}$或$3\,\text{cm}<r\leqslant4\,\text{cm}。$