解:設(shè)點(diǎn)$D$出發(fā)$t$秒時(shí),四邊形$DFCE$的面積為$20\,\text{cm}^2。$
因?yàn)辄c(diǎn)$D$從點(diǎn)$A$出發(fā),速度為$2\,\text{cm/s},$所以$AD = 2t\,\text{cm}。$
由于$\angle B = 90^\circ,$$AB = BC = 12\,\text{cm},$則$\triangle ABC$是等腰直角三角形,$\angle A=\angle C=45^\circ。$
因?yàn)?DE// BC,$所以$\triangle ADE$也是等腰直角三角形,$AE = DE = AD = 2t\,\text{cm},$則$EC = AC - AE。$
又因?yàn)?AC=\sqrt{AB^2 + BC^2}=\sqrt{12^2 + 12^2}=12\sqrt{2}\,\text{cm},$但此處可通過邊長(zhǎng)關(guān)系計(jì)算更簡(jiǎn)便。
因?yàn)?DF// AC,$所以四邊形$DFCE$是平行四邊形(兩組對(duì)邊分別平行),其面積可通過$\triangle ABC$的面積減去$\triangle ADE$和$\triangle DBF$的面積得到。
$\triangle ABC$的面積為$\frac{1}{2}\times AB\times BC=\frac{1}{2}\times12\times12 = 72\,\text{cm}^2。$
$\triangle ADE$的面積為$\frac{1}{2}\times AD\times DE=\frac{1}{2}\times2t\times2t = 2t^2\,\text{cm}^2。$
$DB = AB - AD=12 - 2t\,\text{cm},$因?yàn)?DF// AC,$$\angle B = 90^\circ,$所以$\triangle DBF$也是等腰直角三角形,$BF = DF = DB = 12 - 2t\,\text{cm},$其面積為$\frac{1}{2}\times DB\times BF=\frac{1}{2}\times(12 - 2t)^2。$
則四邊形$DFCE$的面積$S = 72 - 2t^2-\frac{1}{2}(12 - 2t)^2。$
化簡(jiǎn)得:$S=72 - 2t^2-\frac{1}{2}(144 - 48t + 4t^2)=72 - 2t^2 - 72 + 24t - 2t^2=24t - 4t^2。$
令$24t - 4t^2 = 20,$即$4t^2 - 24t + 20 = 0,$化簡(jiǎn)為$t^2 - 6t + 5 = 0,$解得$t_1 = 1,$$t_2 = 5。$
所以點(diǎn)$D$出發(fā)$1$秒或$5$秒時(shí),四邊形$DFCE$的面積為$20\,\text{cm}^2。$