$解:$
$對于一元二次方程ax^{2}+bx + c = 0(a\neq0),根據(jù)求根公式x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a},$
$則x_{1}=\frac{-b + \sqrt{b^{2}-4ac}}{2a},x_{2}=\frac{-b-\sqrt{b^{2}-4ac}}{2a}。$
$1. 計算x_{1}+x_{2}:$
$x_{1}+x_{2}=\frac{-b + \sqrt{b^{2}-4ac}}{2a}+\frac{-b-\sqrt{b^{2}-4ac}}{2a}$
$=\frac{-b+\sqrt{b^{2}-4ac}-b - \sqrt{b^{2}-4ac}}{2a}$
$=\frac{-2b}{2a}=-\frac{a}。$
$2. 計算x_{1}\cdot x_{2}:$
$x_{1}\cdot x_{2}=\left(\frac{-b + \sqrt{b^{2}-4ac}}{2a}\right)\cdot\left(\frac{-b-\sqrt{b^{2}-4ac}}{2a}\right)$
$根據(jù)平方差公式(m + n)(m - n)=m^{2}-n^{2},這里m=-b,n = \sqrt{b^{2}-4ac},則:$
$x_{1}\cdot x_{2}=\frac{(-b)^{2}-(\sqrt{b^{2}-4ac})^{2}}{4a^{2}}$
$=\frac{b^{2}-(b^{2}-4ac)}{4a^{2}}$
$=\frac{b^{2}-b^{2}+4ac}{4a^{2}}=\frac{4ac}{4a^{2}}=\frac{c}{a}。$
$綜上,一元二次方程ax^{2}+bx + c = 0(a\neq0)的根x_{1}、x_{2}滿足x_{1}+x_{2}=-\frac{a},x_{1}\cdot x_{2}=\frac{c}{a}。$