亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第14頁

第14頁

信息發(fā)布者:
$x_1 = -3,$$x_2 = 2$
$x_1 = 0,$$x_2 = 4$
$x^2 - x - 2 = 0$
2
-1
(x-1)(x+3)=0
$x(x + 16) = 0,$$x = 0$ 或 $x + 16 = 0,$$x_{1} = 0,$$x_{2} = - 16。$
$(7x + 11)(7x - 11) = 0,$$7x + 11 = 0$ 或 $7x - 11 = 0,$$x_{1} = - \frac{11}{7},$$x_{2} = \frac{11}{7}。$
$[(3x - 1) + (x + 1)][(3x - 1) - (x + 1)] = 0,$$(4x)(2x - 2) = 0,$$4x = 0$ 或 $2x - 2 = 0,$$x_{1} = 0,$$x_{2} = 1。$
$5x^{2} - 10x + 5 = 0,$$5(x - 1)^{2} = 0,$$x - 1 = 0,$$x_{1} = x_{2} = 1。$
$(x - 3)(x + 1) = 0,$$x - 3 = 0$ 或 $x + 1 = 0,$$x_{1} = 3,$$x_{2} = - 1。$
$5x^{2} - 4x + \frac{1}{4} - x^{2} + \frac{3}{4} = 0,$$4x^{2} - 4x + 1 = 0,$$(2x - 1)^{2} = 0,$$2x - 1 = 0,$$x_{1} = x_{2} = \frac{1}{2}。$
D
$解:令t = 2y + 1,則原方程可化為t^{2}-8t + 16 = 0。$
$對t^{2}-8t + 16進行因式分解,根據(jù)完全平方公式(a-b)^2=a^2-2ab+b^2,可得(t - 4)^{2}=0。$
$則t - 4 = 0,解得t = 4。$
$把t = 4代入t = 2y + 1,得2y+1 = 4,$
$移項可得2y=4 - 1,即2y = 3,$
$解得 y_1 = y_2 = \frac{3}{2} $
解:移項得$3(x - 5)^{2}+2(x - 5)=0。$提取公因式$(x - 5),$得到$(x - 5)[3(x - 5)+2]=0,$即$(x - 5)(3x - 15 + 2)=0,$進一步化簡為$(x - 5)(3x - 13)=0。$則$x - 5 = 0$或$3x - 13 = 0。$由$x - 5 = 0,$解得$x_{1}=5;$由$3x - 13 = 0,$移項可得$3x = 13,$解得$x_{2}=\frac{13}{3}。$
證明:(1)對于一元二次方程$ax^2 + bx + c = 0,$其判別式為$b2-4ac= = b^2 - 4ac。$對于方程$x^2 - (m + 1)x + 3m - 6 = 0,$有$a = 1,$$b = -(m + 1),$$c = 3m - 6。$計算判別式:$b2-4ac= = (-(m + 1))^2 - 4×1×(3m - 6) = m^2 + 2m + 1 - 12m + 24 = m^2 - 10m + 25 = (m - 5)^2。$由于$(m - 5)^2 \geq 0,$所以方程總有兩個實數(shù)根。
(2)由求根公式,方程$x^2 - (m + 1)x + 3m - 6 = 0$的根為$x_{1,2} = \frac{(m + 1) \pm \sqrt{(m - 5)^2}}{2},$即$x_1 = \frac{(m + 1) + (m - 5)}{2} = m - 2,$$x_2 = \frac{(m + 1) - (m - 5)}{2} = 3。$因為方程有一個根是負數(shù),所以$m - 2 \lt 0,$解得$m \lt 2。$所以$m$的取值范圍是$m \lt 2。$
【答案】:
(1)$x_1 = -3$,$x_2 = 2$;(2)$x_1 = 0$,$x_2 = 4$;(3)$x^2 - x - 2 = 0$,2,-1;(4)$x^2 + 2x - 3 = 0$

【解析】:
(1) $x(x + 3) - 2(x + 3) = 0$,提取公因式得$(x + 3)(x - 2) = 0$,則$x + 3 = 0$或$x - 2 = 0$,解得$x_1 = -3$,$x_2 = 2$。
(2) $x^2 - 4x = 0$,提取公因式得$x(x - 4) = 0$,則$x = 0$或$x - 4 = 0$,解得$x_1 = 0$,$x_2 = 4$。
(3) $x(x - 1) = 2$,去括號得$x^2 - x = 2$,移項得$x^2 - x - 2 = 0$,因式分解得$(x - 2)(x + 1) = 0$,則$x - 2 = 0$或$x + 1 = 0$,解得$x_1 = 2$,$x_2 = -1$。
(4) 設方程為$x^2 + bx + c = 0$,由根與系數(shù)關系得$-b = 1 + (-3) = -2$,$c = 1×(-3) = -3$,則$b = 2$,方程為$x^2 + 2x - 3 = 0$。
【答案】:
(1)
$x(x + 16) = 0$,
$x = 0$ 或 $x + 16 = 0$,
$x_{1} = 0$,$x_{2} = - 16$。
(2)
$(7x + 11)(7x - 11) = 0$,
$7x + 11 = 0$ 或 $7x - 11 = 0$,
$x_{1} = - \frac{11}{7}$,$x_{2} = \frac{11}{7}$。
(3)
$[(3x - 1) + (x + 1)][(3x - 1) - (x + 1)] = 0$,
$(4x)(2x - 2) = 0$,
$4x = 0$ 或 $2x - 2 = 0$,
$x_{1} = 0$,$x_{2} = 1$。
(4)
$5x^{2} - 10x + 5 = 0$,
$5(x - 1)^{2} = 0$,
$x - 1 = 0$,
$x_{1} = x_{2} = 1$。
(5)
$(x - 3)(x + 1) = 0$,
$x - 3 = 0$ 或 $x + 1 = 0$,
$x_{1} = 3$,$x_{2} = - 1$。
(6)
$5x^{2} - 4x + \frac{1}{4} - x^{2} + \frac{3}{4} = 0$,
$4x^{2} - 4x + 1 = 0$,
$(2x - 1)^{2} = 0$,
$2x - 1 = 0$,
$x_{1} = x_{2} = \frac{1}{2}$。

【解析】:

(1) $x(x + 16) = 0$
$x = 0$ 或 $x + 16 = 0$
$x_1 = 0$,$x_2 = -16$
(2) $(7x)^2 - 11^2 = 0$
$(7x + 11)(7x - 11) = 0$
$7x + 11 = 0$ 或 $7x - 11 = 0$
$x_1 = -\frac{11}{7}$,$x_2 = \frac{11}{7}$
(3) $[(3x - 1) + (x + 1)][(3x - 1) - (x + 1)] = 0$
$(4x)(2x - 2) = 0$
$4x = 0$ 或 $2x - 2 = 0$
$x_1 = 0$,$x_2 = 1$
(4) $5x^2 - 10x + 5 = 0$
$5(x^2 - 2x + 1) = 0$
$5(x - 1)^2 = 0$
$x - 1 = 0$
$x_1 = x_2 = 1$
(5) $(x - 3)(x + 1) = 0$
$x - 3 = 0$ 或 $x + 1 = 0$
$x_1 = 3$,$x_2 = -1$
(6) $4x^2 - 4x + 1 = 0$
$(2x - 1)^2 = 0$
$2x - 1 = 0$
$x_1 = x_2 = \frac{1}{2}$
【答案】:
D

【解析】:
1. 對于方程① $x^2 - 25 = 0$,可變形為$(x+5)(x-5)=0$,能用因式分解法求解。
2. 對于方程② $y^2 = \sqrt{3}y$,移項得$y^2-\sqrt{3}y = 0$,提取公因式$y$得$y(y - \sqrt{3})=0$,能用因式分解法求解。
3. 對于方程③ $(x + 1)^2 - 4(x + 1)+4 = 0$,把$x + 1$看成一個整體,根據(jù)完全平方公式$(a - b)^2=a^2-2ab + b^2$,這里$a=x + 1$,$b = 2$,則$(x+1-2)^2=(x - 1)^2=0$,也可看作$(x - 1)(x - 1)=0$,能用因式分解法求解。
4. 對于方程④ $x^2+2x + 1 = 0$,根據(jù)完全平方公式$(a+b)^2=a^2+2ab + b^2$,這里$a=x$,$b = 1$,則$(x + 1)^2=0$,即$(x + 1)(x + 1)=0$,能用因式分解法求解。
四個方程都能用因式分解法求解。