解:根據(jù)題意畫出示意圖,連接$OB。$
當(dāng)點(diǎn)$D$在優(yōu)弧$BC$上時(shí),如圖所示:
因?yàn)橹本€$AB$與$\odot O$相切于點(diǎn)$B,$所以$OB\perp BA,$即$\angle OBA = 90^\circ。$
已知$\angle A = 40^\circ,$在$\triangle OAB$中,$\angle AOB=180^\circ-\angle OBA-\angle A=180^\circ - 90^\circ-40^\circ = 50^\circ,$即$\angle BOC = 50^\circ。$
因?yàn)?\angle BDC$是$\overset{\frown}{BC}$所對(duì)的圓周角,$\angle BOC$是$\overset{\frown}{BC}$所對(duì)的圓心角,所以$\angle BDC=\frac{1}{2}\angle BOC=\frac{1}{2}\times50^\circ = 25^\circ。$
當(dāng)點(diǎn)$D$在劣弧$BC$上時(shí),設(shè)此時(shí)點(diǎn)$D$為$D',$如圖所示:
因?yàn)閳A內(nèi)接四邊形對(duì)角互補(bǔ),點(diǎn)$D$在優(yōu)弧$BC$上時(shí)$\angle BDC = 25^\circ,$所以$\angle BD'C=180^\circ-\angle BDC=180^\circ - 25^\circ=155^\circ。$
綜上所述,$\angle BDC$的度數(shù)為$25^\circ$或$155^\circ。$