解:設(shè)$ x\ \mathrm{s} $后$\triangle PBQ$的面積等于$8\ \mathrm{cm^2}。$
根據(jù)題意,點(diǎn)$P$從點(diǎn)$A$沿$AB$向點(diǎn)$B$移動(dòng),速度為$1\ \mathrm{cm/s},$則$AP = x\ \mathrm{cm},$$PB = AB - AP = (6 - x)\ \mathrm{cm}。$
點(diǎn)$Q$從點(diǎn)$B$沿$BC$向點(diǎn)$C$移動(dòng),速度為$2\ \mathrm{cm/s},$則$BQ = 2x\ \mathrm{cm}。$
因?yàn)?\angle B = 90^\circ,$所以$\triangle PBQ$為直角三角形,其面積為$\frac{1}{2} \times PB \times BQ。$
依題意可得:$\frac{1}{2} \times (6 - x) \times 2x = 8,$化簡(jiǎn)得$2x(6 - x) = 16$(即參考答案中的$2x(6 - x) = 8 \times 2$)。
解方程$2x(6 - x) = 16$:
展開得$12x - 2x^2 = 16,$整理為$x^2 - 6x + 8 = 0,$
因式分解得$(x - 2)(x - 4) = 0,$解得$x_1 = 2,$$x_2 = 4。$
經(jīng)檢驗(yàn),$x = 2$和$x = 4$均符合題意(此時(shí)點(diǎn)$P$未超過點(diǎn)$B,$點(diǎn)$Q$未超過點(diǎn)$C$)。
答:經(jīng)過$2\ \mathrm{s}$或$4\ \mathrm{s}$后$\triangle PBQ$的面積等于$8\ \mathrm{cm^2}。$