解:
(1)當(dāng)方程是一元一次方程時(shí),有兩種情況:
情況一:$2 + k = 1,$解得$k = -1。$此時(shí)原方程為$(2\times(-1)+1)x - 4\times(-1)x + (-1 - 1) = 0,$即$-x + 4x - 2 = 0,$合并同類項(xiàng)得$3x - 2 = 0,$解得$x = \frac{2}{3}。$
情況二:$2k + 1 = 0$且$-4k \neq 0,$由$2k + 1 = 0$得$k = -\frac{1}{2},$此時(shí)$-4k = -4\times(-\frac{1}{2}) = 2 \neq 0,$原方程為$2x + (-\frac{1}{2} - 1) = 0,$即$2x - \frac{3}{2} = 0,$解得$x = \frac{3}{4}。$
綜上,當(dāng)$k = -1$時(shí),方程的根為$x = \frac{2}{3};$當(dāng)$k = -\frac{1}{2}$時(shí),方程的根為$x = \frac{3}{4}。$
(2)若方程是一元二次方程,則$2 + k = 2$且$2k + 1 \neq 0,$由$2 + k = 2$得$k = 0,$此時(shí)$2k + 1 = 1 \neq 0,$原方程為$x^2 - 1 = 0。$所以二次項(xiàng)系數(shù)為$1,$一次項(xiàng)系數(shù)為$0,$常數(shù)項(xiàng)為$-1。$