【答案】:
12,$135\pi$
【解析】:
扇形的弧長為:$\frac{216^\circ}{360^\circ} × 2\pi × 15 = 18\pi\,cm$
圓錐底面圓的周長等于扇形弧長,設(shè)底面圓半徑為$r$,則$2\pi r = 18\pi$,解得$r = 9\,cm$
圓錐的母線長為扇形半徑$15\,cm$,根據(jù)勾股定理,圓錐的高為:$\sqrt{15^2 - 9^2} = \sqrt{225 - 81} = \sqrt{144} = 12\,cm$
扇形的側(cè)面積為:$\frac{216^\circ}{360^\circ} × \pi × 15^2 = 135\pi\,cm^2$
圓錐的高是$12\,cm$,側(cè)面積是$135\pi\,cm^2$