作$AM \perp BC,$垂足為點$M。$
設(shè)$BM = x\ \text{m},$則$CM = (6 - x)\ \text{m}。$
在$\text{Rt}\triangle ABM$中,由勾股定理得:
$AM^2 + BM^2 = AB^2,$
$\because AB = 4\ \text{m},$$BM = x\ \text{m},$
$\therefore AM^2 = AB^2 - BM^2 = 16 - x^2。$
在$\text{Rt}\triangle ACM$中,由勾股定理得:
$AM^2 + CM^2 = AC^2,$
$\because CM = (6 - x)\ \text{m},$$AC = 5\ \text{m},$
$\therefore 16 - x^2 + (6 - x)^2 = 5^2,$
解得$x = \frac{9}{4}。$
$\therefore BM = \frac{9}{4}\ \text{m},$$AM = \sqrt{16 - \left(\frac{9}{4}\right)^2} = \frac{5\sqrt{7}}{4}\ \text{m}。$
$\therefore S_{\triangle ABC} = \frac{1}{2} \times 6 \times \frac{5\sqrt{7}}{4} = \frac{15\sqrt{7}}{4}\ \text{m}^2。$
設(shè)圓形花壇的半徑為$r\ \text{m},$
則$\frac{1}{2} \times (4 + 5 + 6)r = \frac{15\sqrt{7}}{4},$
解得$r = \frac{\sqrt{7}}{2}。$
$\therefore$所畫圓形花壇的半徑為$\frac{\sqrt{7}}{2}\ \text{m}。$