(1)證明:過(guò)點(diǎn)$O$作$OG \perp CD$交$CD$于點(diǎn)$G,$連接$OM。$
因?yàn)?\odot O$與$BC$相切于點(diǎn)$M,$所以$OM \perp BC。$
由于四邊形$ABCD$是正方形,$\angle BCD = 90^\circ,$因此四邊形$OMCG$為矩形。
因?yàn)?AC$是正方形$ABCD$的對(duì)角線,所以$\angle DCA = 45^\circ,$故$\triangle CGO$是等腰直角三角形,從而$OG = CG。$
因此矩形$OMCG$是正方形,可得$OM = OG。$
又因?yàn)?OM$是$\odot O$的半徑,所以$OG$也是$\odot O$的半徑,即$CD$與$\odot O$相切。
(2)解:因?yàn)檎叫?ABCD$的邊長(zhǎng)為$4,$所以對(duì)角線$AC = 4\sqrt{2}。$
設(shè)$\odot O$的半徑為$r,$則$OA = OM = r。$
在等腰直角三角形$OMC$中,$OC = \sqrt{OM^2 + MC^2} = \sqrt{r^2 + r^2} = \sqrt{2}r。$
因?yàn)?AC = AO + OC,$所以$4\sqrt{2} = r + \sqrt{2}r,$即$r(1 + \sqrt{2}) = 4\sqrt{2}。$
解得$r = \frac{4\sqrt{2}}{1 + \sqrt{2}} = \frac{4\sqrt{2}(\sqrt{2} - 1)}{(\sqrt{2} + 1)(\sqrt{2} - 1)} = \frac{4\sqrt{2}(\sqrt{2} - 1)}{2 - 1} = 8 - 4\sqrt{2}。$
因此,$\odot O$的半徑為$8 - 4\sqrt{2}。$