解:作$OF \perp CD,$垂足為點$F,$連接$OC,$如圖所示。
∵ $AE = 1\,\text{cm},$$BE = 5\,\text{cm},$
∴ $AB = AE + BE = 1 + 5 = 6\,\text{cm},$$OA = \frac{AB}{2} = 3\,\text{cm}。$
∴ $OE = OA - AE = 3 - 1 = 2\,\text{cm}。$
在$\text{Rt}\triangle OEF$中,
∵ $\angle DEB = 60^\circ,$$OE = 2\,\text{cm},$
∴ $EF = OE \cdot \cos 60^\circ = 2 \times \frac{1}{2} = 1\,\text{cm},$
$OF = OE \cdot \sin 60^\circ = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}\,\text{cm}。$
在$\text{Rt}\triangle OCF$中,
∵ $OC = OA = 3\,\text{cm},$$OF = \sqrt{3}\,\text{cm},$
∴ $CF = \sqrt{OC^2 - OF^2} = \sqrt{3^2 - (\sqrt{3})^2} = \sqrt{9 - 3} = \sqrt{6}\,\text{cm}。$
∵ $OF \perp CD,$
∴ $CD = 2CF = 2\sqrt{6}\,\text{cm}。$