解:作$CE \perp AD,$垂足為點(diǎn)$E,$連接$CD。$
在$Rt\triangle ACB$中,$AC = 1,$$BC = 2\sqrt{2},$
由勾股定理得:$AB=\sqrt{AC^2 + BC^2}=\sqrt{1^2+(2\sqrt{2})^2}=\sqrt{1 + 8}=3。$
因?yàn)?\triangle ABC$的面積$=\frac{1}{2}AC \cdot BC=\frac{1}{2}AB \cdot CE,$
所以$CE=\frac{AC \cdot BC}{AB}=\frac{1 \times 2\sqrt{2}}{3}=\frac{2\sqrt{2}}{3}。$
在$Rt\triangle CDE$中,$CD = CA = 1,$$CE=\frac{2\sqrt{2}}{3},$
由勾股定理得:$DE=\sqrt{CD^2 - CE^2}=\sqrt{1^2 - (\frac{2\sqrt{2}}{3})^2}=\sqrt{1 - \frac{8}{9}}=\sqrt{\frac{1}{9}}=\frac{1}{3}。$
因?yàn)?CE \perp AD,$且$CD = CA,$所以$CE$垂直平分$AD,$
則$AD = 2DE = 2 \times \frac{1}{3}=\frac{2}{3}。$
因此$BD = AB - AD = 3 - \frac{2}{3}=\frac{7}{3}。$
答:$BD$的長(zhǎng)為$\frac{7}{3}。$