【答案】:
解:$(1)2x^2-6x+1=2(x^2-3x)+1=2(x^2-3x+\frac 94)-\frac 72=2(x-\frac 32)^2-\frac 72$
∵$(x-\frac 32)^2≥0,$∴$2(x-\frac 32)^2-\frac 72≥-\frac 72,$即$2x^2-6x+1$的最小值是$-\frac 72$
$ (2)-3x^2+5x-1=-3(x^2-\frac 53x)-1=-3(x-\frac 56)^2+\frac {13}{12}$
∵$(x-\frac 56)^2≥0,$∴$-3(x-\frac 56)^2+\frac {13}{12}≤\frac {13}{12}$
即$-3x^2+5x-1$的最大值為$\frac {13}{12}$
【解析】:
(1)$2x^{2}-6x+1=2\left(x^{2}-3x\right)+1=2\left(x^{2}-3x+\frac{9}{4}-\frac{9}{4}\right)+1=2\left(x-\frac{3}{2}\right)^{2}-\frac{9}{2}+1=2\left(x-\frac{3}{2}\right)^{2}-\frac{7}{2}$,當(dāng)$x=\frac{3}{2}$時,代數(shù)式$2x^{2}-6x+1$的最小值為$-\frac{7}{2}$。
(2)$-3x^{2}+5x-1=-3\left(x^{2}-\frac{5}{3}x\right)-1=-3\left(x^{2}-\frac{5}{3}x+\frac{25}{36}-\frac{25}{36}\right)-1=-3\left(x-\frac{5}{6}\right)^{2}+\frac{25}{12}-1=-3\left(x-\frac{5}{6}\right)^{2}+\frac{13}{12}$,當(dāng)$x=\frac{5}{6}$時,代數(shù)式$-3x^{2}+5x-1$的最大值為$\frac{13}{12}$。