亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第9頁(yè)

第9頁(yè)

信息發(fā)布者:
C
C
4
$3(x-1)^2-5$
$2(x-\frac 54)^2-\frac 98$
解:$2x^2 + 4x - 1 = 0$
$x^2 + 2x - \frac{1}{2} = 0$
$x^2 + 2x + 1 = \frac{3}{2}$
$(x + 1)^2 = \frac{3}{2}$
$x + 1 = ±\frac{\sqrt{6}}{2}$
$x_1 = -1 + \frac{\sqrt{6}}{2},$$x_2 = -1 - \frac{\sqrt{6}}{2}$
解:$0.4x^2 - 0.8x = 1$
$4x^2 - 8x = 10$
$2x^2 - 4x - 5 = 0$
$a = 2,$$b = -4,$$c = -5$
$b^2 - 4ac = (-4)^2 - 4×2×(-5) = 56$
$x = \frac{4 ± \sqrt{56}}{2×2} = \frac{4 ± 2\sqrt{14}}{4}$
$x_1 = \frac{2 + \sqrt{14}}{2},$$x_2 = \frac{2 - \sqrt{14}}{2}$
解:$3y^2 + 1 = 2\sqrt{3}y$
$3y^2 - 2\sqrt{3}y + 1 = 0$
$y^2 - \frac{2\sqrt{3}}{3}y + \frac{1}{3} = 0$
$(y - \frac{\sqrt{3}}{3})^2 = 0$
$y_1 = y_2 = \frac{\sqrt{3}}{3}$
解:$2x^2 + 3x - 3 = 0$
$x^2 + \frac{3}{2}x - \frac{3}{2} = 0$
$x^2 + \frac{3}{2}x + \frac{9}{16} = \frac{33}{16}$
$(x + \frac{3}{4})^2 = \frac{33}{16}$
$x + \frac{3}{4} = ±\frac{\sqrt{33}}{4}$
$x_1 = \frac{-3 + \sqrt{33}}{4},$$x_2 = \frac{-3 - \sqrt{33}}{4}$
(1)將方程$(x + m)^2=\frac{1}{2}$展開,得$x^2 + 2mx + m^2=\frac{1}{2},$移項(xiàng)后為$x^2 + 2mx + m^2-\frac{1}{2}=0。$已知原方程為$x^2-3x + p = 0,$根據(jù)對(duì)應(yīng)項(xiàng)系數(shù)相等,可得$2m=-3,$解得$m=-\frac{3}{2}。$將$m =-\frac{3}{2}$代入$m^2-\frac{1}{2}=p,$可得$p=\left(-\frac{3}{2}\right)^2-\frac{1}{2}=\frac{9}{4}-\frac{2}{4}=\frac{7}{4}。$
(2)由
(1)知$m =-\frac{3}{2},$則方程為$\left(x-\frac{3}{2}\right)^2=\frac{1}{2}。$兩邊開平方,得$x-\frac{3}{2}=\pm\sqrt{\frac{1}{2}}=\pm\frac{\sqrt{2}}{2},$解得$x_1=\frac{3 + \sqrt{2}}{2},$$x_2=\frac{3-\sqrt{2}}{2}。$
【答案】:
C

【解析】:
A. $x^{2}-6x+4=0$
$x^{2}-6x=-4$
$x^{2}-6x+9=-4+9$
$(x-3)^{2}=5$,正確。
B. $-2m^{2}-m+1=0$
$m^{2}+\frac{1}{2}m=\frac{1}{2}$
$m^{2}+\frac{1}{2}m+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}$
$(m+\frac{1}{4})^{2}=\frac{9}{16}$,正確。
C. $-2a^{2}+3a+2=0$
$a^{2}-\frac{3}{2}a=1$
$a^{2}-\frac{3}{2}a+\frac{9}{16}=1+\frac{9}{16}$
$(a-\frac{3}{4})^{2}=\frac{25}{16}$,原選項(xiàng)配方錯(cuò)誤。
D. $3y^{2}-4y+1=0$
$y^{2}-\frac{4}{3}y=-\frac{1}{3}$
$y^{2}-\frac{4}{3}y+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}$
$(y-\frac{2}{3})^{2}=\frac{1}{9}$,正確。
答案:C
【答案】:
C

【解析】:
由題意得:$2x^{2}-5x-5=2$
移項(xiàng)化簡(jiǎn):$2x^{2}-5x-7=0$
因式分解:$(2x-7)(x+1)=0$
解得:$x=\frac{7}{2}$或$x=-1$
結(jié)論:C
【答案】:
4

【解析】:
$(2x - b)^2 = 4x^2 - 4bx + b^2$,
因?yàn)?4x^2 - ax + 1 = 4x^2 - 4bx + b^2$,
所以$\begin{cases}-a = -4b\\b^2 = 1\end{cases}$,
由$b^2 = 1$得$b = 1$或$b = -1$,
當(dāng)$b = 1$時(shí),$-a = -4×1$,$a = 4$,$ab = 4×1 = 4$;
當(dāng)$b = -1$時(shí),$-a = -4×(-1)$,$a = -4$,$ab = (-4)×(-1) = 4$,
綜上,$ab = 4$。
4
【答案】:
解:$x^2+2x-\frac 12=0$  
$ \ \ \ \ \ x^2+2x+1=\frac 32$  
$ \ \ \ \ \ \ \ (x+1)^2=\frac 32$  
$ \ \ \ \ \ \ \ \ \ x+1=±\frac {\sqrt {6}}2$  
$ x_1=-1+\frac {\sqrt {6}}2,$$x_2=-1-\frac {\sqrt {6}}2$  
$0.4x^2-0.8x=1$  
解:$4x^2-8x=10$  
$2x^2-4x-5=0$  
$a=2,$$b=-4,$$c=-5$  
$b^2-4ac=(-4)^2-4×2×(-5)=56$  
$x=\frac {4±\sqrt 56}{2×2}=\frac {4±2\sqrt {14}}4$  
$x_1=\frac {2+\sqrt 14}2,$$x_2=\frac {2-\sqrt 14}2$  
解:$3y^2-2\sqrt {3}y+1=0$  
$ y^2-\frac {2\sqrt {3}}3y+\frac 13=0$  
$ (y-\frac {\sqrt {3}}3)^2=0$  
$ y_1=y_2=\frac {\sqrt {3}}3$  
解:$x^2+\frac 32x-\frac 32=0$  
$ x^2+\frac 32x+\frac 9{16}=\frac {33}{16}$  
$ (x+\frac 34)^2=\frac {33}{16}$  
$ x+\frac 34=±\frac {\sqrt {33}}4$  
$ x_1=\frac {-3+\sqrt {33}}4,$$x_2=\frac {-3-\sqrt {33}}4$  

【解析】:
(1)解:$a=2$,$b=4$,$c=-1$,$\Delta=4^2-4×2×(-1)=16+8=24$,$x=\frac{-4\pm\sqrt{24}}{2×2}=\frac{-4\pm2\sqrt{6}}{4}=-1\pm\frac{\sqrt{6}}{2}$,$x_{1}=-1+\frac{\sqrt{6}}{2}$,$x_{2}=-1-\frac{\sqrt{6}}{2}$;
(2)解:方程化為$0.4x^2 - 0.8x - 1=0$,兩邊乘$10$得$4x^2 - 8x - 10=0$,化簡(jiǎn)$2x^2 - 4x - 5=0$,$a=2$,$b=-4$,$c=-5$,$\Delta=(-4)^2 - 4×2×(-5)=16 + 40=56$,$x=\frac{4\pm\sqrt{56}}{2×2}=\frac{4\pm2\sqrt{14}}{4}=\frac{2\pm\sqrt{14}}{2}$,$x_{1}=\frac{2+\sqrt{14}}{2}$,$x_{2}=\frac{2-\sqrt{14}}{2}$;
(3)解:方程化為$3y^2 - 2\sqrt{3}y + 1=0$,$a=3$,$b=-2\sqrt{3}$,$c=1$,$\Delta=(-2\sqrt{3})^2 - 4×3×1=12 - 12=0$,$y=\frac{2\sqrt{3}\pm0}{2×3}=\frac{\sqrt{3}}{3}$,$y_{1}=y_{2}=\frac{\sqrt{3}}{3}$;
(4)解:$a=2$,$b=3$,$c=-3$,$\Delta=3^2 - 4×2×(-3)=9 + 24=33$,$x=\frac{-3\pm\sqrt{33}}{2×2}=\frac{-3\pm\sqrt{33}}{4}$,$x_{1}=\frac{-3+\sqrt{33}}{4}$,$x_{2}=\frac{-3-\sqrt{33}}{4}$
【答案】:
解:$(1)(x+m)^2=x^2+2mx+\ \mathrm {m^2}=\frac 12,$即$x+2mx+\ \mathrm {m^2}-\frac 12=0$
∴2m=-3,$p=\ \mathrm {m^2}-\frac 12$
∴$m=-\frac 32,$$p=\frac 74$
(2)將$m=-\frac 32$代入方程,得$(x-\frac 32)^2=\frac 12$
解得$x_1=\frac {3+\sqrt {2}}2,$$x_2=\frac {3-\sqrt {2}}2$

【解析】:
(1)解:$x^{2}-3x+p=0$
$x^{2}-3x=-p$
$x^{2}-3x+\left(\frac{3}{2}\right)^{2}=-p+\left(\frac{3}{2}\right)^{2}$
$\left(x-\frac{3}{2}\right)^{2}=-p+\frac{9}{4}$
由題意得$m=-\frac{3}{2}$,$-p+\frac{9}{4}=\frac{1}{2}$
解得$p=\frac{7}{4}$
(2)$\left(x-\frac{3}{2}\right)^{2}=\frac{1}{2}$
$x-\frac{3}{2}=\pm\frac{\sqrt{2}}{2}$
$x_{1}=\frac{3+\sqrt{2}}{2}$,$x_{2}=\frac{3-\sqrt{2}}{2}$