【答案】:
解:$(x-2)^2-7=0$
$ \ \ \ \ \ \ \ \ \ \ x-2=±\sqrt {7}$
$ x_1=2+\sqrt {7},$$x_2=2-\sqrt {7}$
解:$y^2+5y+2=0$
$ \ \ \ \ \ \ (y+\frac 52)^2=\frac {17}4$
$ \ \ \ \ \ \ \ \ \ y+\frac 52=±\frac {17}2$
$ y_1=\frac {-5+\sqrt {17}}2,$$y_2=\frac {-5-\sqrt {17}}2$
解:$x^2-\frac 83x+\frac {16}9=\frac {25}9$
$ \ \ \ \ \ \ \ \ (x-\frac 43)^2=\frac {25}9$
$ \ \ \ \ \ \ \ \ \ \ x-\frac 43=±\frac 53$
$ x_1=3,$$x_2=-\frac 13$
解:$x^2-2\sqrt {2}x+2=5$
$ (x-\sqrt {2})^2=5$
$ x-\sqrt {2}=±\sqrt {5}$
$ x_1=\sqrt {2}+\sqrt {5},$$x_2=\sqrt {2}-\sqrt {5}$
【解析】:
(1)$x^{2}-4x-3=0$
$a=1$,$b=-4$,$c=-3$
$\Delta =b^{2}-4ac=(-4)^{2}-4×1×(-3)=16 + 12=28$
$x=\frac{4\pm\sqrt{28}}{2}=\frac{4\pm2\sqrt{7}}{2}=2\pm\sqrt{7}$
$x_{1}=2+\sqrt{7}$,$x_{2}=2-\sqrt{7}$
(2)$y^{2}+5y + 2=0$
$a=1$,$b=5$,$c=2$
$\Delta =5^{2}-4×1×2=25 - 8=17$
$y=\frac{-5\pm\sqrt{17}}{2}$
$y_{1}=-\frac{5}{2}+\frac{\sqrt{17}}{2}$,$y_{2}=-\frac{5}{2}-\frac{\sqrt{17}}{2}$
(3)$3x^{2}-8x - 3=0$
$a=3$,$b=-8$,$c=-3$
$\Delta =(-8)^{2}-4×3×(-3)=64 + 36=100$
$x=\frac{8\pm\sqrt{100}}{6}=\frac{8\pm10}{6}$
$x_{1}=\frac{18}{6}=3$,$x_{2}=\frac{-2}{6}=-\frac{1}{3}$
(4)$x^{2}-2\sqrt{2}x - 3=0$
$a=1$,$b=-2\sqrt{2}$,$c=-3$
$\Delta =(-2\sqrt{2})^{2}-4×1×(-3)=8 + 12=20$
$x=\frac{2\sqrt{2}\pm\sqrt{20}}{2}=\frac{2\sqrt{2}\pm2\sqrt{5}}{2}=\sqrt{2}\pm\sqrt{5}$
$x_{1}=\sqrt{2}+\sqrt{5}$,$x_{2}=\sqrt{2}-\sqrt{5}$