$解:(2)因?yàn)槠揭凭€段AD得到線段BC,所以\overrightarrow{AD}=\overrightarrow{BC}。$
$已知A(2,0),D(6,4),B(0,-6),$
$設(shè)C(x,y),則\overrightarrow{AD}=(6 - 2,4 - 0)=(4,4),\overrightarrow{BC}=(x - 0,y + 6)。$
$由\overrightarrow{AD}=\overrightarrow{BC},可得\begin{cases}x-0 = 4\\y + 6 = 4\end{cases},解得\begin{cases}x = 4\\y=-2\end{cases},所以C(4,-2)。$
$求點(diǎn)E的坐標(biāo):$
$設(shè)直線BC的解析式為y=kx + m,$
$把B(0,-6),C(4,-2)代入y = kx + m得\begin{cases}m=-6\\4k+m=-2\end{cases}。$
$將m = - 6代入4k+m=-2,得4k-6=-2,4k=4,解得k = 1。$
$所以直線BC的解析式為y=x - 6。$
$令y = 0,則x-6 = 0,解得x = 6,所以E(6,0)。$
(3)$過(guò)P作PF// AD(AD// BC)。$
$設(shè)P(x,0)(x\gt6)。$
$因?yàn)锳D// BC// PF,\angle FPC=\angle PCB,\angle FPA=\angle PAE。$
$當(dāng)P在E右側(cè)時(shí),\angle PCB-\angle APC=\angle FPC-\angle APC=\angle FPA,$
$因?yàn)閈angle PAE = 45^{\circ},所以\angle PCB-\angle APC = 45^{\circ}。$
$當(dāng)P在x軸負(fù)半軸時(shí),過(guò)P作PH// AD(AD// BC),$
$\angle HPC+\angle PCB = 180^{\circ},$
$\angle HPA=\angle PAE = 45^{\circ},$
$\angle APC=\angle HPC-\angle HPA,$
$則\angle HPC=\angle APC + 45^{\circ}。$
$代入\angle HPC+\angle PCB = 180^{\circ}$
$得\angle APC + 45^{\circ}+\angle PCB = 180^{\circ},$
$所以\angle PCB-\angle APC=135^{\circ}。$