$解:(2)設(shè)BC段小明的函數(shù)解析式為y=kx + c(k\neq0),$
$把B(36,2400),E(44,4000)代入y = kx + c$
$得:\begin{cases}36k + c=2400\\44k + c=4000\end{cases}。$
$用44k + c-(36k + c)=4000 - 2400,$
$即44k + c - 36k - c=1600,8k=1600,解得k = 200。 $
$把k = 200代入36k + c=2400,$
$得36×200 + c=2400,c=2400-7200=-4800,$
$所以y = 200x-4800。小華的函數(shù)解析式為y = 80x。$
$聯(lián)立\begin{cases}y = 200x-4800\\y = 80x\end{cases},則200x-4800 = 80x。$
$200x-80x=4800,120x=4800,解得x = 40。$
$把x = 40代入y = 80x,得y = 80×40 = 3200。$
$與公園之間的距離為4000 - 3200=800m。$
$(3)設(shè)小明重新出發(fā)后騎行t分鐘與小華相距300m。 $
$小明的函數(shù)y_{明}=200(t + 36)-4800=200t+2400,$
$小華的函數(shù)y_{華}=80(t + 36)=80t + 2880。$
$分兩種情況:$
$情況一:y_{明}-y_{華}=300,$
$即(200t + 2400)-(80t + 2880)=300。$
$200t + 2400-80t - 2880=300,$
$120t=300 + 480,120t=780,$
$解得t = 6.5。$
$情況二:y_{華}-y_{明}=300,$
$即(80t + 2880)-(200t + 2400)=300。$
$80t + 2880-200t - 2400=300,$
$-120t=300 - 480,-120t=-180,解得t = 1.5。$
$綜上,答案為:(1)a = 2400,b = 36;$
$(2)小明和小華第二次相遇時與公園之間的距離為800m;$
$(3)小明重新出發(fā)后,再騎行1.5min或6.5min與小華相距300m。$