亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第61頁

第61頁

信息發(fā)布者:
連接 $AC,$在 $Rt\triangle ACD$ 中,$\because AC^{2}=CD^{2}+AD^{2}=3^{2}+4^{2}=25,$$\therefore AC=5。$
$\because AC^{2}+BC^{2}=5^{2}+12^{2}=169,$$AB^{2}=13^{2}=169,$$\therefore AC^{2}+BC^{2}=AB^{2},$$\therefore \angle ACB=90^{\circ}。$
該區(qū)域面積$=S_{\triangle ACB}-S_{\triangle ACD}=\frac{1}{2}\times AC\times BC - \frac{1}{2}\times AD\times CD=\frac{1}{2}\times5\times12 - \frac{1}{2}\times4\times3=30 - 6=24(m^{2})。$
鋪滿這塊空地共需花費$=24\times30=720$(元)。
答:用該草坪鋪滿這塊空地共需花費720元。
$\because \triangle ABC$是等邊三角形,$\therefore \angle CAB=60^{\circ}。$
$\because \triangle PAC$繞點$A$按逆時針方向旋轉(zhuǎn)后得到$\triangle P'AB,$
$\therefore \angle PAP'=\angle CAB=60^{\circ},$$AP=AP',$$P'B=PC=10。$
$\therefore \triangle APP'$是等邊三角形,$\therefore PP'=AP=6,$$\angle APP'=60^{\circ}。$
$\because PB^{2}+PP'^{2}=8^{2}+6^{2}=64 + 36=100=10^{2}=P'B^{2},$
$\therefore \triangle BPP'$是直角三角形,$\angle P'PB=90^{\circ}。$
$\therefore \angle APB=\angle APP'+\angle P'PB=60^{\circ}+90^{\circ}=150^{\circ}。$
綜上,$PP'$的長為$6,$$\angle APB$的大小為$150^{\circ}。$
3,4,5
$解:(2)當 k 大于 2 時,k^{2}+\left \lbrack \left( \frac{1}{2}k\right)^{2}-1\right\rbrack^{2}=\left \lbrack \left( \frac{1}{2}k\right)^{2}+1\right\rbrack^{2}.\ $
$證明:\because左邊=k^{2}+\left \lbrack \left( \frac{1}{2}k\right)^{2}-1\right\rbrack^{2}=k^{2}+\left \lbrack \frac{1}{4}k^{2}-1\right\rbrack^{2}=k^{2}+\frac{1}{16}k^{4}+1-\frac{1}{2}k^{2}=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1;$
$右邊=\left \lbrack \left( \frac{1}{2}k\right)^{2}+1\right\rbrack^{2}=\left \lbrack \frac{1}{4}k^{2}+1\right\rbrack^{2}=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1.$
$\therefore左邊=右邊,$
$\therefore等式成立$
【答案】:
(1)3,4,5 (2)當 k 大于 2 時,$k^{2}+\left \lbrack \left( \frac{1}{2}k\right)^{2}-1\right\rbrack^{2}=\left \lbrack \left( \frac{1}{2}k\right)^{2}+1\right\rbrack^{2}$. 證明:$\because$左邊$=k^{2}+\left \lbrack \left( \frac{1}{2}k\right)^{2}-1\right\rbrack^{2}=k^{2}+\left \lbrack \frac{1}{4}k^{2}-1\right\rbrack^{2}=k^{2}+\frac{1}{16}k^{4}+1-\frac{1}{2}k^{2}=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1$;右邊$=\left \lbrack \left( \frac{1}{2}k\right)^{2}+1\right\rbrack^{2}=\left \lbrack \frac{1}{4}k^{2}+1\right\rbrack^{2}=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1$.$\therefore$左邊=右邊,$\therefore$等式成立

【解析】:
(1)6,8,10
(2)當$k$是大于2的偶數(shù)時,$k^{2}+\left[\left(\frac{1}{2}k\right)^{2}-1\right]^{2}=\left[\left(\frac{1}{2}k\right)^{2}+1\right]^{2}$
證明:左邊$=k^{2}+\left[\left(\frac{1}{2}k\right)^{2}-1\right]^{2}=k^{2}+\left(\frac{1}{4}k^{2}-1\right)^{2}=k^{2}+\frac{1}{16}k^{4}-\frac{1}{2}k^{2}+1=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1$
右邊$=\left[\left(\frac{1}{2}k\right)^{2}+1\right]^{2}=\left(\frac{1}{4}k^{2}+1\right)^{2}=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1$
$\because$左邊=右邊
$\therefore$等式成立