【答案】:
(1)3,4,5 (2)當 k 大于 2 時,$k^{2}+\left \lbrack \left( \frac{1}{2}k\right)^{2}-1\right\rbrack^{2}=\left \lbrack \left( \frac{1}{2}k\right)^{2}+1\right\rbrack^{2}$. 證明:$\because$左邊$=k^{2}+\left \lbrack \left( \frac{1}{2}k\right)^{2}-1\right\rbrack^{2}=k^{2}+\left \lbrack \frac{1}{4}k^{2}-1\right\rbrack^{2}=k^{2}+\frac{1}{16}k^{4}+1-\frac{1}{2}k^{2}=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1$;右邊$=\left \lbrack \left( \frac{1}{2}k\right)^{2}+1\right\rbrack^{2}=\left \lbrack \frac{1}{4}k^{2}+1\right\rbrack^{2}=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1$.$\therefore$左邊=右邊,$\therefore$等式成立
【解析】:
(1)6,8,10
(2)當$k$是大于2的偶數(shù)時,$k^{2}+\left[\left(\frac{1}{2}k\right)^{2}-1\right]^{2}=\left[\left(\frac{1}{2}k\right)^{2}+1\right]^{2}$
證明:左邊$=k^{2}+\left[\left(\frac{1}{2}k\right)^{2}-1\right]^{2}=k^{2}+\left(\frac{1}{4}k^{2}-1\right)^{2}=k^{2}+\frac{1}{16}k^{4}-\frac{1}{2}k^{2}+1=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1$
右邊$=\left[\left(\frac{1}{2}k\right)^{2}+1\right]^{2}=\left(\frac{1}{4}k^{2}+1\right)^{2}=\frac{1}{16}k^{4}+\frac{1}{2}k^{2}+1$
$\because$左邊=右邊
$\therefore$等式成立