【答案】:
22
【解析】:
設(shè)$\angle AOF = x$,因為$OF$平分$\angle AOE$,所以$\angle EOF = \angle AOF = x$。
$\angle DOE$是直角,即$\angle DOE = 90^\circ$,直線$AB$和$CD$相交于點(diǎn)$O$,所以$\angle AOC$與$\angle BOD$是對頂角,$\angle AOC = \angle BOD$。
$\angle COF = 34^\circ$,$\angle AOC = \angle AOF - \angle COF = x - 34^\circ$。
$\angle AOE + \angle DOE + \angle BOD = 180^\circ$(平角定義),$\angle AOE = 2x$,所以$2x + 90^\circ + \angle BOD = 180^\circ$,即$\angle BOD = 90^\circ - 2x$。
又因為$\angle AOC = \angle BOD$,所以$x - 34^\circ = 90^\circ - 2x$,解得$3x = 124^\circ$,$x = \frac{124^\circ}{3}$(此步計算錯誤,應(yīng)為$3x = 124^\circ$錯誤,正確應(yīng)為$x - 34^\circ = 180^\circ - 2x - 90^\circ$,即$x - 34^\circ = 90^\circ - 2x$,$3x = 124^\circ$錯誤,正確應(yīng)為$3x = 124^\circ$不對,重新分析:
$\angle AOD$是平角為$180^\circ$,$\angle AOD = \angle AOF + \angle FOE + \angle EOD$,$\angle AOF = x$,$\angle FOE = x$,$\angle EOD = 90^\circ$,所以$\angle AOD = x + x + 90^\circ = 2x + 90^\circ$,$\angle AOD = 180^\circ$,所以$2x + 90^\circ = 180^\circ$,$2x = 90^\circ$,$x = 45^\circ$,則$\angle AOC = x - \angle COF = 45^\circ - 34^\circ = 11^\circ$,$\angle BOD = \angle AOC = 11^\circ$(又錯了,正確應(yīng)為:
$\angle COE = \angle COF + \angle FOE = 34^\circ + x$,$\angle DOE = 90^\circ$,$\angle COD$是平角$180^\circ$,所以$\angle COE + \angle DOE = 180^\circ$錯誤,$\angle COD = \angle COE + \angle EOD = 180^\circ$,$\angle COE = 180^\circ - 90^\circ = 90^\circ$,$\angle COE = \angle COF + \angle FOE = 34^\circ + x = 90^\circ$,所以$x = 56^\circ$,$\angle AOF = 56^\circ$,$\angle AOC = \angle AOF - \angle COF = 56^\circ - 34^\circ = 22^\circ$,$\angle BOD = \angle AOC = 22^\circ$。
22