(1)=
(2)由折疊可知∠CBA=∠CBF,所以∠CBF=$\frac{1}{2}$∠ABF,因?yàn)锽E平分∠FBD,所以∠EBF =∠EBD=$\frac{1}{2}$∠DBF,又因?yàn)椤螦BF+∠DBF=180°,所以∠CBF+∠EBF=
90°,即∠CBE=90°,所以BE⊥BC
(3)依照題意畫出圖形.如圖,設(shè)∠FBE= x°,因?yàn)锽E是∠FDB的角平分線,所以∠DBF=∠FBE=x°.由翻折可知,
∠FBM=∠FBE=x°.因?yàn)锽M平分∠FBC,所以∠FBC=2∠FBM=2x°.所以
∠ABC=∠FBC=2x°.又因?yàn)椤螦BC+∠FBC+∠FBE+∠DBE=180°,即
2x+2x+x+x=180,x=30.所以∠FBE=30°