亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第45頁(yè)

第45頁(yè)

信息發(fā)布者:
(1)觀察表格中速度與時(shí)間的關(guān)系,當(dāng)$t = 0$時(shí),$v = 5 = 5+\frac{0^{2}}{10};$當(dāng)$t = 1$時(shí),$v=5+\frac{1}{10}=5+\frac{1^{2}}{10};$當(dāng)$t = 2$時(shí),$v = 5+\frac{4}{10}=5+\frac{2^{2}}{10};$以此類推,可得速度$v$與時(shí)間$t$之間的關(guān)系式為$v = 5+\frac{t^{2}}{10}。$
(2)當(dāng)$t = 12\ \text{s}$時(shí),將$t = 12$代入關(guān)系式$v=5+\frac{t^{2}}{10}$中,可得$v=5+\frac{12^{2}}{10}=5+\frac{144}{10}=5 + 14.4=19.4\ \text{m/s}。$
(1)因?yàn)?|a| = 5,$所以$a = ±5。$因?yàn)?b$的倒數(shù)是$-\frac{1}{2},$所以$b = -2。$當(dāng)$a = 5$時(shí),$a + b = 5 + (-2) = 3;$當(dāng)$a = -5$時(shí),$a + b = -5 + (-2) = -7。$故$a + b$的值為$3$或$-7。$
(2)因?yàn)?|b - a| = b - a,$所以$b - a ≥ 0,$即$b ≥ a。$已知$b = -2,$$a = ±5,$則$a = -5。$將$a = -5,$$b = -2$代入$|ab^2 - \frac{1}{5}a^2b|,$可得:
$\begin{aligned}ab^2 - \frac{1}{5}a^2b&=(-5)×(-2)^2 - \frac{1}{5}×(-5)^2×(-2)\\&=(-5)×4 - \frac{1}{5}×25×(-2)\\&=-20 - 5×(-2)\\&=-20 + 10\\&=-10\end{aligned}$
所以$|ab^2 - \frac{1}{5}a^2b| = |-10| = 10。$
$x+3$
$3x-3$
$解:(2)AB=4x,AD=AH+FG=3x+x+3=4x+3, $
$所以C_{長(zhǎng)方形ABCD}=(4x+4x+3)×2=16x+6. $
$當(dāng)x=6時(shí), $
$C_{長(zhǎng)方形ABCD}=16×6+6=102. $
【答案】:
(1)$v=5+\frac{t^{2}}{10}$ (2)$v=19.4\ m/s$

【解析】:
(1)觀察表格可知,當(dāng)$t = 0$時(shí),$v=5+\frac{0^{2}}{10}$;當(dāng)$t = 1$時(shí),$v=5+\frac{1^{2}}{10}$;當(dāng)$t = 2$時(shí),$v=5+\frac{2^{2}}{10}$;以此類推,可得速度$v$與時(shí)間$t$之間的關(guān)系式為$v = 5+\frac{t^{2}}{10}$。
(2)當(dāng)$t = 12\,s$時(shí),將$t = 12$代入$v = 5+\frac{t^{2}}{10}$,可得$v=5+\frac{12^{2}}{10}=5+\frac{144}{10}=5 + 14.4=19.4\,m/s$。
【答案】:
(1)由題意,得$a=±5$,$b=-2$,則$a+b=3$或$-7$ (2)因?yàn)?|b-a|=b-a$,所以$b-a>0$,所以$a=-5$,$b=-2$,則原式$=|-20+10|=10$

【解析】:

(1)因?yàn)?|a| = 5$,所以$a = ±5$;因?yàn)?b$的倒數(shù)是$-\frac{1}{2}$,所以$b = -2$。
當(dāng)$a = 5$時(shí),$a + b = 5 + (-2) = 3$;當(dāng)$a = -5$時(shí),$a + b = -5 + (-2) = -7$,故$a + b$的值為$3$或$-7$。
(2)因?yàn)?|b - a| = b - a$,所以$b - a ≥ 0$,即$b ≥ a$。已知$b = -2$,所以$a ≤ -2$,又因?yàn)?a = ±5$,所以$a = -5$。
將$a = -5$,$b = -2$代入$|ab^2 - \frac{1}{5}a^2b|$,得:
$\begin{aligned}&|(-5)×(-2)^2 - \frac{1}{5}×(-5)^2×(-2)|\\=&|(-5)×4 - \frac{1}{5}×25×(-2)|\\=&|-20 - 5×(-2)|\\=&|-20 + 10|\\=&|-10|\\=&10\end{aligned}$
故$|ab^2 - \frac{1}{5}a^2b|$的值為$10$。