解:仍然全等,理由如下:
∵?$AD$?和?$A′D′$?分別是?$△ABC$?和?$△A′B′C′$?的?$BC$?和?$B′C′$?邊上的中線,
∴?$BD = CD,$??$B′D′ = C′D′.$?
在?$△ADC$?和?$△EDB$?中,
?$\{ \begin {array}{l}{AD = DE} \\{∠ADC = ∠BDE,} \\{BD = CD} \end {array} .$?
∴?$△ADC≌△EDB(\mathrm {SAS}).$?
∴?$AC = EB,$??$∠DAC = ∠E,$?
同理?$A′C′ = E′B′,$??$∠D′A′C′ = ∠E′.$?
∵?$AC = A′C′,$?
∴?$EB = E′B′.$?
∵?$AD = A′D′,$??$AD = DE,$??$A′D′ = D′E′,$?
∴?$AE = A′E′.$?
∵?$AB = A′B′,$?
∴?$△ABE≌△A′B′E′(\mathrm {SSS}).$?
∴?$∠BAE = ∠B′A′E′,$??$∠E = ∠E′.$?
∴?$∠DAC = ∠D′A′C′.$?
∴?$∠BAC = ∠B′A′C′,$?
又?$AB = A′B′,$??$AC = A′C′,$?
∴?$△ABC≌△A′B′C′(\mathrm {SAS});$?