解:設(shè)所想的數(shù)為$x。$
按照魔術(shù)師的指示,計(jì)算步驟如下:
1. 把這個(gè)數(shù)乘2后減4:$2x - 4;$
2. 然后除以8:$\frac{2x - 4}{8} = \frac{x}{4} - \frac{1}{2};$
3. 再減去原來所想的數(shù)與6的差的$\frac{1}{4}$:$\frac{x}{4} - \frac{1}{2} - \frac{x - 6}{4}。$
化簡(jiǎn)上述代數(shù)式:
$\begin{aligned}\frac{x}{4} - \frac{1}{2} - \frac{x - 6}{4}&=\frac{x}{4} - \frac{x - 6}{4} - \frac{1}{2}\\&=\frac{x - (x - 6)}{4} - \frac{1}{2}\\&=\frac{6}{4} - \frac{1}{2}\\&=\frac{3}{2} - \frac{1}{2}\\&=1\end{aligned}$
因此,無論$x$取何值,計(jì)算結(jié)果都是$1。$