解:?$(1)$?原式?$ A = 6mn - 4\ \mathrm {m^2} - 2m + 3\ \mathrm {m^2} + 5m - 4mn - 3m $?
?$ = (6mn - 4mn) + (-4\ \mathrm {m^2} + 3\ \mathrm {m^2}) + (-2m + 5m - 3m) $?
?$ = 2mn -\mathrm {m^2} + 0 $?
?$ = 2mn -\mathrm {m^2} $?
?$ (2)$?對于多項式?$ x^2 + mx - nx^2 - 3x + 4 ,$?合并同類項得:
?$ = (1 - n)x^2 + (m - 3)x + 4 $?
?$ $?因為多項式的值與?$ x $?無關(guān),所以?$ x $?的各項系數(shù)為?$ 0,$?即:
?$ 1 - n = 0 $?且?$ m - 3 = 0 $?
解得:?$ n = 1 ,$??$ m = 3 $?
?$ $?將?$ m = 3 ,$??$ n = 1 $?代入?$ A = 2mn -\mathrm {m^2} $?中,得:
?$ A = 2×3×1 - 3^2 = 6 - 9 = -3 $?