解:(1)設(shè)$s = 1 + 2 + 2^2 + 2^3 + \dots + 2^{2024},$①
將等式兩邊同時乘2得:$2s = 2 + 2^2 + 2^3 + \dots + 2^{2024} + 2^{2025},$②
② - ①得:$2s - s = 2^{2025} - 1,$
所以$s = 2^{2025} - 1,$即$1 + 2 + 2^2 + 2^3 + \dots + 2^{2024} = 2^{2025} - 1。$
(2)設(shè)$s = 1 + 3 + 3^2 + 3^3 + \dots + 3^{20},$①
將等式兩邊同時乘3得:$3s = 3 + 3^2 + 3^3 + \dots + 3^{20} + 3^{21},$②
② - ①得:$3s - s = 3^{21} - 1,$
即$2s = 3^{21} - 1,$
所以$s = \frac{3^{21} - 1}{2},$即$1 + 3 + 3^2 + 3^3 + \dots + 3^{20} = \frac{3^{21} - 1}{2}。$