解:
首先,對$\sqrt{5}$和$\sqrt{2} + 1$分別平方,得到:
$(\sqrt{5})^2 = 5$
$(\sqrt{2} + 1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}$
接著,比較兩者的大小,計算它們的差:
$5 - (3 + 2\sqrt{2}) = 2 - 2\sqrt{2} = 2(1 - \sqrt{2})$
由于$\sqrt{2} > 1,$所以$1 - \sqrt{2} < 0,$因此$2(1 - \sqrt{2}) < 0。$
所以,得出$5 < 3 + 2\sqrt{2},$即$\sqrt{5} < \sqrt{2} + 1。$