解:能證明?$△ABC$?與?$△A′B′C′$?全等?$.$?
證明:作?$CD⊥AB$?,交?$AB$?的延長線于點?$D$?,
作?$C′D′⊥A′B′$?,交?$A′B′$?的延長線于點?$D′$?
則?$∠CDB=∠C′D′B′=90°$?
∵?$∠CBA=∠C′B′A′$?
∴?$∠CBD=∠C′B′D′$?
在?$△CBD$?和?$△C′B′D′$?中
?$\begin {cases}{∠C D B=∠C' D' B'}\\{∠C B D=∠C' B' D'}\\{C B=C' B'}\end {cases}$?
∴?$△CBD≌△C′B′D′(\mathrm {AAS})$?
∴?$CD=C′D′$?,?$BD=B′D′$?
∵?$∠CDB=∠C′D′B′=90°$?
在?$Rt△CDA$?和?$Rt△C′D′A′$?中
?$ \begin {cases}{AC=A'C' }\\{CD=C'D'}\end {cases}$?
∴?$Rt△CDA≌Rt△C′D′A′(\mathrm {HL})$?
∴?$∠A=∠A′$?,?$AD=A′D′$?
又∵?$BD=B′D′$?
∴?$AB=A′B′$?
在?$△ABC$?和?$△A′B′C′$?中
?$\begin {cases}{∠A B C=∠A' B' C'}\\{∠A=∠A'}\\{A C=A' C'}\end {cases}$?
∴?$\triangle {ABC} ≌\triangle {A'B'C'(\mathrm {AAS})}$?