亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第32頁

第32頁

信息發(fā)布者:
30
證明: ∵?$AB / / DE$?
∴?$∠B=∠D E C$?
∵?$E C=C D$?
∴?$∠D E C=∠E D C$?
又?$∠B=∠C$?
∴?$∠DEC=∠EDC=∠C$?
∴?$△DEC$?為等邊三角形

$證明:(1) \because \triangle \mathrm{ABC}, \triangle \mathrm{CDE}都為等邊三角形 $ 
$\therefore A C=B C, C D=C E$, $\angle \mathrm{ACB}=\angle \mathrm{ECD}=\angle \mathrm{B}=60^{\circ}$ 
$\therefore \angle \mathrm{ACB}-\angle \mathrm{ACD}=\angle \mathrm{ECD}-\angle \mathrm{ACD}$ $\therefore \angle B C D=\angle A C E$ 
$在\triangle \mathrm{BDC}和\triangle \mathrm{AEC}中$ 
$\left\{\begin{array}{l}B C=A C \\ \angle B C D=\angle A C E \\ C D=C E\end{array}\right.$ 
$\therefore \triangle \mathrm{BDC} \cong \triangle \mathrm{AEC}(\mathrm{SAS})$
$(2)∵△BDC≌△AEC$ 
$\therefore \angle \mathrm{EAC}=\angle \mathrm{B}=60^{\circ}$ 
$\therefore \angle \mathrm{EAC}=\angle \mathrm{ACB}$ $\therefore A E / / B C$
證明:?$(1)$?如圖,連接?$AP$?
∵?$PE\bot AB$?,?$PF\bot AC$?,?$BG\bot AC$?
∴?$S_{\triangle ABP}=\dfrac {1}{2}AB·PE$?,?$S_{\triangle ACP}=\dfrac {1}{2}AC·PF$?,
?$S_{\triangle ABC}=\dfrac {1}{2}AC·BG$?
又∵?$S_{\triangle ABP}+S_{\triangle ACP}=S_{\triangle ABC}$?
∴?$\dfrac {1}{2}AB·PE+\dfrac {1}{2}AC·PF=\dfrac {1}{2}AC·BG$?
∵?$AB=AC$?
∴?$PE+PF=BG$?
?$(2) $?有結(jié)論?$BG=PE+PF+PM$?
理由是:如圖?$2$?,連接?$PA$?、?$PB$?、?$PC$?
∵?$S_{\triangle ABC}=S_{\triangle APB}+S_{\triangle ACP}+S_{\triangle PBC}$?
∴?$\dfrac {1}{2}AC×BG=\dfrac {1}{2}AB×PE+\dfrac {1}{2}AC×PF+\dfrac {1}{2}BC×PM$?
∵?$\triangle ABC$?為等邊三角形
∴?$AC=AB=BC$?
∴?$BG=PE+PF+PM$?