解:根據(jù)三角形全等的判定方法?$HL $?可知:
?$①$?當(dāng)?$P $?運(yùn)動到?$AP=BC$?時,?$∠C=∠QAP=90°$?
在?$Rt△ABC$?與?$Rt△QPA$?中
?$\begin {cases}{AP=BC}\\{PQ=AB}\end {cases}$?
∴?$Rt△ABC≌Rt△QPA(\mathrm {HL})$?
即?$AP=BC=5\ \mathrm {cm}$?
?$②$?當(dāng)?$P $?運(yùn)動到與?$C$?點(diǎn)重合時,?$AP=AC$?
在?$Rt△ABC$?與?$Rt△QPA$?中
?$\begin {cases}{AP=AC}\\{PQ=AB}\end {cases}$?
∴?$Rt△QAP≌Rt△BCA(\mathrm {HL})$?
即?$AP=AC=10\ \mathrm {cm}$?
∴當(dāng)點(diǎn)?$P $?與點(diǎn)?$C$?重合時,?$△ABC$?才能和?$△APQ{全等}$?
綜上所述,當(dāng)點(diǎn)?$P{位于}AC$?的中點(diǎn)處或當(dāng)點(diǎn)?$P $?與點(diǎn)?$C$?重合時,
?$△ABC$?才能和?$△APQ{全等}$?