(1)證明:
∵$\triangle ABC \cong \triangle A'B'C'$
∴$AB = A'B',$$\angle B = \angle B',$$\angle BAC = \angle B'A'C'$
∵$AD,$$A'D'$分別平分$\angle BAC,$$\angle B'A'C'$
∴$\angle BAD = \frac{1}{2}\angle BAC,$$\angle B'A'D' = \frac{1}{2}\angle B'A'C'$
∴$\angle BAD = \angle B'A'D'$
在$\triangle ABD$和$\triangle A'B'D'$中
$\angle B = \angle B',$$AB = A'B',$$\angle BAD = \angle B'A'D'$
∴$\triangle ABD \cong \triangle A'B'D'$(ASA)
∴$AD = A'D'$
(2) 如果兩個(gè)三角形全等,那么它們的對(duì)應(yīng)角平分線相等。