解:∵?$∠B = 90°,$??$AB = 3,$??$BC = 4$?
∴?$AC^2=AB^2+BC^2=25,$??$AC=5$?
?$ $?在?$\triangle ACD$?中,?$AC^2=25,$??$CD = 12,$??$AD = 13$?
∵?$AC^2+CD^2=25+12^2= 169,$??$AD^2=13^2=169$?
∴?$AC^2+CD^2=AD^2$?
∴?$\triangle ACD$?是直角三角形,且?$∠ACD = 90°$?
∴?$S_{四邊形ABCD}= S_{\triangle ABC}+S_{\triangle ACD}$?
?$ =\frac 12×AB×BC+\frac 12×AC×CD$?
?$ =\frac 12×3×4+\frac 12×5×12=36$?